Sample Written Assignment 1

Question (Section 5.5, #54): Evaluate $\int_0^1 x\sqrt{1-x^4} \, dx$ by making a substitution and interpreting the resulting integral in terms of an area.

Answer: We begin by recalling that $x^2 + y^2 = 1$ defines the unit circle (that is the circle of radius 1) centered at the origin. If we attempt to solve for y, we first notice that $y^2 = 1 - x^2$, and so taking the square root we see that

$$y = \pm \sqrt{1 - x^2}$$

Thus, the graph of the function $f(x) = \sqrt{1-x^2}$ gives the top half of the unit circle, and the graph of the function $g(x) = -\sqrt{1-x^2}$ gives the bottom half of the unit circle.

In attempting to evaluate the integral, we begin by making the substitution $u = x^2$ with the hope of taking out the extra x out front. We then have that $du = 2x \, dx$, so $x \, dx = \frac{1}{2} \, du$. Now when x = 0, we have $u = 0^2 = 0$. Similarly, when x = 1, we have $u = 1^2 = 1$. Therefore,

$$\int_0^1 x\sqrt{1-x^4} = \int_0^1 \sqrt{1-(x^2)^2} \cdot x \, dx$$
$$= \int_0^1 \sqrt{1-u^2} \cdot \frac{1}{2} \, du$$
$$= \frac{1}{2} \int_0^1 \sqrt{1-u^2} \, du$$

We now examine the integral $\int_0^1 \sqrt{1-u^2} \, du$. Since the function $f(u) = \sqrt{1-u^2}$ is nonnegative on the interval [0, 1], this integral is just the area of the region above the *u*-axis and below the graph of $f(u) = \sqrt{1-u^2}$ on the interval [0, 1]. As we noted above, the function $f(u) = \sqrt{1-u^2}$ on the interval [-1, 1] is the graph of the top half of the unit circle. Thus, the integral

$$\int_0^1 \sqrt{1-u^2} \ du$$

is calculating exactly 1/4 of the area of the unit circle. Since the unit circle has area π , it follows that

$$\int_0^1 \sqrt{1 - u^2} \, du = \frac{1}{4} \cdot \pi = \frac{\pi}{4}$$

and hence

$$\int_0^1 x\sqrt{1-x^4} = \frac{1}{2}\int_0^1 \sqrt{1-u^2} \, du = \frac{1}{2} \cdot \frac{\pi}{4} = \frac{\pi}{8}$$