Homework 5: Due Wednesday, February 18

Problem 1: Working with sets coded as unordered lists without repetition, write Scheme functions that perform the following. In each case, explain why your functions works.

a. surjective?: Takes three inputs, a function f and two sets as and bs. Views f as a function with domain as and codomain bs, and so assumes that $f(a) \in bs$ for all $a \in as$. Returns #t if f is surjective, and returns #f otherwise.

b. injective?: Takes three inputs, a function f and two sets as and bs. Views f as a function with domain as and codomain bs, and so assumes that $f(a) \in bs$ for all $a \in as$. Returns #t if f is injective, and returns #f otherwise.

Problem 2: Recall that \mathbb{Q} is the set of rational numbers, i.e. those numbers than can written as fractions $\frac{a}{b}$ where $a, b \in \mathbb{Z}$ and $b \neq 0$. Show that the function $f: \mathbb{Q} \to \mathbb{Q}$ given by f(x) = 7x - 2 is bijective.

Problem 3: Let A, B, and C be sets. Let $f: A \to B$ and $g: B \to C$ be functions. We define a new function $g \circ f: A \to C$, called the *composition* of f and g, by letting $(g \circ f)(a) = g(f(a))$ for all $a \in A$. In other words, given an input $a \in A$, we first produce the element f(a) in B, then use this as input to g to produce the final output g(f(a)). Show that if both f and g are injective, then $g \circ f$ is injective.

Problem 4: Show that

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6}$$

for all $n \in \mathbb{N}^+ = \{1, 2, 3, 4, \dots\}.$

Problem 5: Let $n \in \mathbb{N}$ with $n \geq 2$. Find a formula for

$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \dots + \frac{1}{(n-1)\cdot n}$$

and prove it by induction.

Problem 6: Define a sequence recursively by letting $a_0 = 3$ and $a_{n+1} = a_n^2 + a_n + 7$ for all $n \in \mathbb{N}$. For example, we have

- $a_1 = a_0^2 + a_0 + 7 = 3^2 + 3 + 7 = 19.$
- $a_2 = a_1^2 + a_1 + 7 = 387.$

Using only induction and the definition of odd, show that a_n is odd for all $n \in \mathbb{N}$.