
Homework 9: Due Friday, March 13

Note: For each of the counting problems, you must explain your solution. For example, if your answer
is a product, describe the sequence of choices you are making and explain where each term comes from.
Numerical answers without written justification will receive no credit.

Problem 1: How many 6-letter “words” contain one of the letters A,B,C,D three times and each of the
others once?

Problem 2: Suppose that a lottery draws 6 numbers from {1, 2, . . . , 60} without replacement and where
order drawn doesn’t matter. What percentage of possible lottery numbers have 3 evens and 3 odds?

Problem 3: A local pizza place has three different types of crust, five different meats, and seven different
(non meat) toppings. For a given pizza, you can pick any crust, at most 2 meats (so 0, 1, or 2 is possible)
and at most 3 toppings (so 0, 1, 2, or 3 is possible). Assume that you can not have double of any topping.
How many pizzas are possible?

Problem 4: In class, we talked about the number of paths starting at (0, 0) and ending at (m,n) where
each step was either one step north or one step east. How many such paths are there from (0, 0) to (12, 9)
which do not go through the point (5, 4)? Think of needing to avoid that intersection because of construction.

Problem 5: How many 5-card poker hands have at least one card of every suit?

Problem 6: Let n, k ∈ N. A sequence of nonnegative integers (a1, a2, . . . , ak) such that a1+a2+· · ·+ak = n
is called a weak composition of n into k parts. For example (1, 3, 5, 3) is a weak composition of 12 into 4
parts and (2, 0, 5, 1, 0, 0) is a weak composition of 8 into 6 parts. Write a recursive Scheme program that
takes two natural numbers n and k as input, and produces the set of all weak compositions of n into k parts.
For example, on inputs n = 3 and k = 2, it should produce

′((0 3) (1 2) (2 1) (3 0))

(although possibly in a different order). If n = 0 and k = 0, your program should produce ′(()) (because
the empty sequence is technically a weak composition of 0 into 0 parts). If n > 0 and k = 0, your program
should produce ′().
Hint: Here’s a helpful way to think about this recursively: If k > 0, then a weak composition of n into k
parts is of one of two types: either it starts with a 0 or it does not. In the former case, if we omit the 0,
then we obtain a weak composition of n into k − 1 parts. In the latter case, if we decrease the first element
by 1, then we obtain a weak composition of n− 1 into k parts.


