Written Assignment 1 : Due Wednesday, September 11

Instructions: Your answers should be written in complete sentences (augmented by mathematical symbols where appropriate) and should include detailed justification of all nontrivial steps.

Problem 1: Explain why, no matter what values are given to a, b, c below, there is no possible sequence of elementary row operations turning the linear system

4x	+	2y	=	1
ax	_	y	=	0
bx	+	cy	=	3
				_
x	+	y	=	2
-2x			=	-1
x	+	3y	=	5

Problem 2: In our definition of the elementary row operation known as "row combination", we are allowed to replace row k by the sum of itself and a multiple of a different row ℓ (where different means that $\ell \neq k$). Our proof that this elementary row operation preserves the solution set certainly used the fact that $\ell \neq k$. However, this does not imply that a different argument might work in the case that $\ell = k$.

Suppose then that we consider the operation where we take a row k and replace it by the sum of itself and a multiple of row k. Do we necessarily preserve the solution set? As always, you must prove this if your answer is yes, or you must provide a specific counterexample (with justification) if your answer is no.

Problem 3: Let $a, b, c, d, e \in \mathbb{R}$. Suppose that the equation ax + by = d has the same solution set in \mathbb{R}^2 as the equation ax + cy = e.

(a) Assume also that $a \neq 0$. Show that both b = c and d = e.

into the linear system

(b) Assume now that a = 0. Give a specific counterexample (with explanation) to show that it may not be true that both b = c and d = e.

Note: You will need to use that $a \neq 0$ in the first part, so be sure to point out where.