Written Assignment 8: Due Wednesday, November 27

Required Problems

Problem 1: In this problem, we determine which 2×2 matrices commute with every 2×2 matrix. a. Show that if $r \in \mathbb{R}$ and we let

$$A = \begin{pmatrix} r & 0\\ 0 & r \end{pmatrix}$$

then AB = BA for every 2×2 matrix B.

b. Suppose that A is a 2×2 matrix which the property that AB = BA for every 2×2 matrix B. Show that there exists $r \in \mathbb{R}$ such that

$$A = \begin{pmatrix} r & 0\\ 0 & r \end{pmatrix}$$

Hint: For part b, make strategic choices for B to make your life as simple as possible. I suggest thinking about matrices with lots of zeros.

Interlude: Let A be an $m \times n$ matrix. Recall that we defined Col(A) to be the span of the columns of A. Notice that with our definition of matrix multiplication, we can also write this as

$$Col(A) = \{A\vec{v} : \vec{v} \in \mathbb{R}^n\}$$

We defined the null space of a linear transformation, and we can similarly define the null space of a matrix as follows:

$$\mathcal{N}(A) = \{ \vec{v} \in \mathbb{R}^n : A\vec{v} = \vec{0} \}$$

Now given an $n \times n$ matrix A, we say that A is *idempotent* if $A^2 = A$. For example, the zero matrix and the identity matrix are idempotent. More interesting examples are:

$\begin{pmatrix} 1\\ 1 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	$\begin{pmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{1}{3} \end{pmatrix}$	$\frac{1}{4}$	$\frac{1}{41}$	$\left(\frac{1}{4} + \frac{1}{4} + \frac{1}{2}\right)$
		•	<u>`2</u>	2	27

One can check that the matrices in Challenge Problem 2 on Written Assignment 6 are all idempotent, as is any matrix representing the linear transformation in Challenge Problem 1 on Written Assignment 7. Intuitively, any matrix that represents a projection onto a subspace (like these examples do) will be idempotent, because projecting twice in succession gives the same result as just projecting once.

Problem 2: Let A be an $n \times n$ idempotent matrix.

- a. Show that if A invertible, then $A = I_{n \times n}$.
- b. Show that $\mathcal{N}(A) \cap Col(A) = \{\vec{0}\}.$

c. Show that $\mathcal{N}(A) + Col(A) = \mathbb{R}^n$. In other words, show that for every $\vec{v} \in \mathbb{R}^n$, there exists $\vec{u} \in \mathcal{N}(A)$ and $\vec{w} \in Col(A)$ with $\vec{v} = \vec{u} + \vec{w}$.

Challenge Problems

Problem 1: Let V and W be finite-dimensional vector spaces.

a. Suppose that $t_1: V \to W$ is an injective linear transformation. Show that there exists a linear transformation $t_2: W \to V$ such that $t_2 \circ t_1 = id_V$.

b. Suppose that $t_1: V \to W$ is an surjective linear transformation. Show that there exists a linear transformation $t_2: W \to V$ such that $t_1 \circ t_2 = id_W$.