Problem Set 13: Due Wednesday, October 29

Problem 1: Consider the unique linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ with

$$[T] = \begin{pmatrix} 1 & 0\\ 6 & -1 \end{pmatrix}$$

Determine if T is diagonalizable. If so, find an example of $\alpha = (\vec{u}_1, \vec{u}_2)$ with $Span(\vec{u}_1, \vec{u}_2) = \mathbb{R}^2$ such that $[T]_{\alpha}$ is a diagonal matrix, and determine $[T]_{\alpha}$ in this case.

Problem 2: Consider the unique linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ with

$$[T] = \begin{pmatrix} 3 & -1 \\ 1 & 5 \end{pmatrix}$$

Determine if T is diagonalizable. If so, find an example of $\alpha = (\vec{u}_1, \vec{u}_2)$ with $Span(\vec{u}_1, \vec{u}_2) = \mathbb{R}^2$ such that $[T]_{\alpha}$ is a diagonal matrix, and determine $[T]_{\alpha}$ in this case.

Problem 3: Define a sequence of numbers as follows. Let $g_0 = 0$, $g_1 = 1$, and $g_n = \frac{1}{2}(g_{n-1} + g_{n-2})$ for all $n \in \mathbb{N}$ with $n \geq 2$. In other words, if $n \geq 2$, then the n^{th} term of the sequence is the average of the two previous terms.

a. Write down a 2×2 matrix A such that

$$A\begin{pmatrix}g_{n+1}\\g_n\end{pmatrix} = \begin{pmatrix}g_{n+2}\\g_{n+1}\end{pmatrix}$$

for all $n \in \mathbb{N}$.

b. Find an invertible matrix P and a diagonal matrix D with $A = PDP^{-1}$.

c. Find a general equation for g_n .

d. As n gets large, the values of g_n approach a fixed number. Find that number.

Problem 4: Given a 2×2 matrix A and an $r \in \mathbb{R}$, what is the relationship between det $(r \cdot A)$ and det(A)? Explain.