Problem Set 15: Due Friday, November 7

Problem 1: Recall that \mathcal{P} is the vector space of all polynomial functions $f: \mathbb{R} \to \mathbb{R}$. Let W be the subset of \mathcal{P} consisting of those polynomials that have a nonnegative constant term (i.e. the constant terms is greater than or equal to 0). Is W a subspace of \mathcal{P} ? Either prove or give a counterexample.

Problem 2: Let $V = \mathbb{R}^4$. Write down a system of four equations in three unknowns such that

$$\begin{pmatrix} 1 \\ 7 \\ 0 \\ 6 \end{pmatrix} \in Span \left(\begin{pmatrix} 2 \\ -5 \\ 1 \\ 4 \end{pmatrix}, \begin{pmatrix} 6 \\ 1 \\ -8 \\ 2 \end{pmatrix}, \begin{pmatrix} 0 \\ 3 \\ 3 \\ 3 \end{pmatrix} \right)$$

if and only if the system has a solution.

Problem 3: Let V be the vector space of all 2×2 matrices. Show that

$$\begin{pmatrix} -2 & 7 \\ -1 & -9 \end{pmatrix} \in Span\left(\begin{pmatrix} 1 & 1 \\ 2 & -3 \end{pmatrix}, \begin{pmatrix} 3 & 0 \\ 5 & -4 \end{pmatrix}\right)$$

Problem 4: Let \mathcal{D} be the vector space of all differentiable functions $f: \mathbb{R} \to \mathbb{R}$. Let $f_1: \mathbb{R} \to \mathbb{R}$ be the function $f_1(x) = \sin^2 x$ and let $f_2: \mathbb{R} \to \mathbb{R}$ be the function $f_2(x) = \cos^2 x$. Finally, let $W = Span(f_1, f_2)$, and notice that W is a subspace of \mathcal{D} . Determine, with explanation, whether the following functions are elements of W.

- a. The function $g_1 : \mathbb{R} \to \mathbb{R}$ given by $g_1(x) = 3$.
- b. The function $g_2 : \mathbb{R} \to \mathbb{R}$ given by $g_2(x) = x^2$.
- c. The function $g_3 : \mathbb{R} \to \mathbb{R}$ given by $g_3(x) = \sin x$.
- d. The function $g_4 : \mathbb{R} \to \mathbb{R}$ given by $g_4(x) = \cos 2x$.

Problem 5: Let V be a vector space, and let W be a subspace of V. Recall that

$$V \backslash W = \{ \vec{v} \in V : \vec{v} \notin W \}$$

i.e. $V\backslash W$ is the set of elements of V that are *not* in W. Is $V\backslash W$ always a subspace of V? Sometimes a subspace of V? Never a subspace of V? Explain.

Problem 6: Let \mathcal{F} be the set of all functions $f: \mathbb{R} \to \mathbb{R}$. Recall that a function $f: \mathbb{R} \to \mathbb{R}$ is called *even* if f(-x) = f(x) for all $x \in \mathbb{R}$. Let W be the set of all even functions, i.e.

$$W = \{ f \in \mathcal{F} : f(-x) = f(x) \text{ for all } x \in \mathbb{R} \}.$$

Is W a subspace of \mathcal{F} ? Either prove or give a counterexample.