Problem Set 4: Due Monday, September 15

Problem 1: Describe the set $\{x \in \mathbb{R} : |x| < 5\} \cup \{x \in \mathbb{R} : x \ge 3\}$ more fundamentally without using set operations, and explain why your set is the same.

Problem 2: Let $A = \{6n : n \in \mathbb{N}\} \cap \{10n : n \in \mathbb{N}\}.$

a. Write down the smallest 3 elements of A, and briefly explain how you determined them.

b. Make a conjecture about how to describe A parametrically (no need to prove this conjecture).

Problem 3: Given two sets A and B, we define

 $A \triangle B = \{x : x \text{ is an element of exactly one of } A \text{ or } B\}$

and we call this set the symmetric difference of A and B. For example, we have

$$\{4,5,6,8\} \triangle \{5,6,7,8\} = \{4,7\}$$

a. Determine $\{1, 3, 8, 9\} \triangle \{2, 3, 4, 7, 8\}$.

b. Determine $\{1, 2, 3\} \triangle \{1, \{2, 3\}\}$.

c. What are the smallest 9 elements of the set $\{2n : n \in \mathbb{N}\} \triangle \{3n : n \in \mathbb{N}\}$?

d. Make a conjecture about how to write $\{2n : n \in \mathbb{N}\} \triangle \{3n : n \in \mathbb{N}\}\$ as the union of 3 pairwise disjoint sets (no need to prove this conjecture, but do write the 3 sets parametrically).

Problem 4: Define a function $f: \{1, 2, 3, ..., 12\} \to \mathbb{N}$ by letting f(n) be the number of positive divisors of n. For example, the set of positive divisors of 6 is $\{1, 2, 3, 6\}$, so f(6) = 4.

a. Write out f formally as a set by listing all its elements.

b. Write down the set $\operatorname{range}(f)$ explicitly.

Problem 5: Define a function $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ by letting $f((a, b)) = a^2 + b^2$. Does range $(f) = \mathbb{N}$? Explain your answer carefully.

Problem 6: Consider the function $f: \mathbb{Q} \to \mathbb{Q}$ given by f(a) = 5a - 3. We clearly have range $(f) \subseteq \mathbb{Q}$ by definition. Thus, to show $\mathbb{Q} = \operatorname{range}(f)$, it suffices to show $\mathbb{Q} \subseteq \operatorname{range}(f)$. To do this, we need to show how to take an arbitrary $b \in \mathbb{Q}$, and fill in the blank in $f(\underline{\qquad}) = b$ with an element of \mathbb{Q} . Figure out how to do this, and then write up a formal proof that $\mathbb{Q} \subseteq \operatorname{range}(f)$.