Problem Set 15: Due Friday, November 4

Problem 1: Recall that \mathcal{P} is the vector space of all polynomial functions $f \colon \mathbb{R} \to \mathbb{R}$. Let W be the subset of \mathcal{P} consisting of those polynomials that have a nonnegative constant term (i.e. the constant terms is greater than or equal to 0). Is W a subspace of \mathcal{P} ? Either prove or give a counterexample.

Problem 2: Let $V = \mathbb{R}^4$. Write down a system of four equations in three unknowns such that

$$\begin{pmatrix} 1\\7\\0\\6 \end{pmatrix} \in \operatorname{Span} \left(\begin{pmatrix} 2\\-5\\1\\4 \end{pmatrix}, \begin{pmatrix} 6\\1\\-8\\2 \end{pmatrix}, \begin{pmatrix} 0\\3\\3\\3 \end{pmatrix} \right)$$

if and only if the system has a solution.

Problem 3: Let V be the vector space of all 2×2 matrices. Show that

$$\begin{pmatrix} -2 & 7\\ -1 & -9 \end{pmatrix} \in \operatorname{Span} \left(\begin{pmatrix} 1 & 1\\ 2 & -3 \end{pmatrix}, \begin{pmatrix} 3 & 0\\ 5 & -4 \end{pmatrix} \right).$$

Problem 4: Let \mathcal{D} be the vector space of all differentiable functions $f \colon \mathbb{R} \to \mathbb{R}$. Let $f_1 \colon \mathbb{R} \to \mathbb{R}$ be the function $f_1(x) = \sin^2 x$ and let $f_2 \colon \mathbb{R} \to \mathbb{R}$ be the function $f_2(x) = \cos^2 x$. Finally, let $W = \text{Span}(f_1, f_2)$, and notice that W is a subspace of \mathcal{D} . Determine, with explanation, whether the following functions are elements of W.

a. The function $g_1 \colon \mathbb{R} \to \mathbb{R}$ given by $g_1(x) = 3$.

b. The function $g_2 \colon \mathbb{R} \to \mathbb{R}$ given by $g_2(x) = x^2$.

c. The function $g_3 \colon \mathbb{R} \to \mathbb{R}$ given by $g_3(x) = \sin x$.

d. The function $g_4 \colon \mathbb{R} \to \mathbb{R}$ given by $g_4(x) = \cos 2x$.

Problem 5: Let V be a vector space, and let W be a subspace of V. Recall that

$$V \setminus W = \{ \vec{v} \in V : \vec{v} \notin W \},\$$

i.e. $V \setminus W$ is the set of elements of V that are *not* in W. Is $V \setminus W$ always a subspace of V? Sometimes a subspace of V? Never a subspace of V? Explain.

Problem 6: Let \mathcal{F} be the set of all functions $f \colon \mathbb{R} \to \mathbb{R}$. Recall that a function $f \colon \mathbb{R} \to \mathbb{R}$ is called *even* if f(-x) = f(x) for all $x \in \mathbb{R}$. Let W be the set of all even functions, i.e.

$$W = \{ f \in \mathcal{F} : f(-x) = f(x) \text{ for all } x \in \mathbb{R} \}.$$

Is W a subspace of \mathcal{F} ? Either prove or give a counterexample.