Problem Set 3: Due Friday, September 9

Problem 1:	Write both	h the converse	e and contrape	ositive of each	of the followin	g statements (ne	o need to
argue whether	any of the	e them are tru	ue or false). In	each case, get	t rid of all occu	rrences of <i>not</i> in	the final
result.							
T.C. 577	1 2 2 1						

- a. If $a \in \mathbb{Z}$ and a > 2, then 4a > 7.
- b. If $x, y \in \mathbb{R}$ and $x^4 + y^4 = 1$, then $x^2 + y^2 \le 2$.
- c. If $a \in \mathbb{Z}$ and there exists $m \in \mathbb{Z}$ with a = 10m, then there exists $m \in \mathbb{Z}$ with a = 5m.

Problem 2: Consider the following statement:

If $a \in \mathbb{Z}$ and 3a + 5 is even, then a is odd.

- a. Write down the contrapositive of the given statement.
- b. Show that the original statement is true by proving that the contrapositive is true.

Problem 3: Let $A = \{e^x : x \in \mathbb{R}\}.$

- a. Write a description of A by carving it out of a set using a property with a "there exists" quantifier.
- b. Find another way to describe A by carving it out of a set using a property without any quantifiers. Briefly explain why your set is equal (no need to give a formal proof).

Problem 4: Let $A = \{12n - 7 : n \in \mathbb{Z}\}$ and let $B = \{4n + 1 : n \in \mathbb{Z}\}.$

- a. Show that $B \not\subseteq A$.
- b. Fill in the blanks below with appropriate phrases so that the result is a correct proof of the statement that $A \subseteq B$.

Problem 5: Let $A = \{x^2 + 5 : x \in \mathbb{R}\}$ and let $B = \{x \in \mathbb{R} : x \ge 5\}$. In this problem, we show that A = B by doing a double containment proof.

- a. Prove that $A \subseteq B$.
- b. Fill in the blanks below with appropriate phrases so that the result is a correct proof of the statement that $B \subseteq A$.

Let $y \in B$ be arbitrary. By definition of B, we know ________. Now notice that _______ ≥ 0 so ________ $\in \mathbb{R}$, and that ________ = y, so $y \in A$. Since $y \in B$ was arbitrary, the result follows.