Written Assignment 1 : Due Wednesday, February 2

Problem 1: If A is the augmented matrix of a linear system, and you obtain B from A by multiplying a column of A by a nonzero constant, must the corresponding systems have the same solution set? You should either argue that this operation always works, or produce a specific counterexample.

Problem 2: Explain why, no matter what values a, b, c are used, the following two matrices are not row equivalent.

1	1	2	4	2	1]
-2	0	-1	a	-1	0
$\begin{bmatrix} 1\\ -2\\ 1 \end{bmatrix}$	3	5	b	$2 \\ -1 \\ c$	3

Hint: It is impossible to try all conceivable sequences of elementary row operations. What do you know about two matrices that are row equivalent?

Problem 3: Suppose that you are given a linear system

$$a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,n}x_n = 0$$

$$a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,n}x_n = 0$$

$$\vdots$$

$$a_{m,1}x_1 + a_{m,2}x_2 + \dots + a_{m,n}x_n = 0$$

Suppose that (s_1, s_2, \ldots, s_n) and (t_1, t_2, \ldots, t_n) are both solutions to this linear system. Explain why $(s_1 + t_1, s_2 + t_2, \ldots, s_n + t_n)$ is also a solution.