Written Assignment 7 : Due Wednesday, April 13

Problem 1: Let $a, b, c \in \mathbb{R}$ and let

$$M = \begin{bmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{bmatrix}$$

a. Show that det(M) = (b-a)(c-a)(c-b).

b. Explain why M is invertible exactly when a, b, c are all distinct from each other.

Problem 2: Let A be an $m \times n$ matrix and let B be an $n \times p$ matrix.

a. Show that $Col(AB) \subseteq Col(A)$, i.e. show that if $\mathbf{v} \in Col(AB)$, then $\mathbf{v} \in Col(A)$.

b. Show that $rank(AB) \leq rank(A)$.

c. Show that if B is an invertible $n \times n$ matrix (so p = n), then rank(AB) = rank(A).

Hint for c: You can get the reverse inequality using a clever application of part b.

Problem 3: Let *P* be an $n \times n$ stochastic matrix (remember this means that all entries of *P* are nonnegative and each column sums to 1). In class, we outlined a very sophisticated argument that there exists a probability vector \mathbf{q} with $P\mathbf{q} = \mathbf{q}$. In this problem we prove the weaker statement that there exists a nonzero vector \mathbf{x} with $P\mathbf{x} = \mathbf{x}$.

a. Show that if you add up the rows of P - I, you get the zero vector.

b. Show that the rows of P - I are linearly dependent.

c. Show that $rank(P-I) \leq n-1$.

d. Show that $Nul(P-I) \neq \{\mathbf{0}\}$.

e. Show that there exists a nonzero vector \mathbf{x} with $P\mathbf{x} = \mathbf{x}$.