Problem Set 11: Due Monday, March 11

Problem 1: Let

$$\alpha = \left(\begin{pmatrix} -1\\2 \end{pmatrix}, \begin{pmatrix} 5\\1 \end{pmatrix} \right).$$

a. Show that α is a basis for \mathbb{R}^2 . b. Compute $\begin{bmatrix} 5 \\ 1 \end{bmatrix}_{\alpha}^{-1}$.

c. Compute $\begin{bmatrix} 8 \\ 17 \end{bmatrix}_{\alpha}$. In each part, briefly explain how you carried out your computation.

Problem 2: Consider the unique linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ with

$$[T] = \begin{pmatrix} 6 & -7 \\ 4 & -5 \end{pmatrix}.$$

Let $\alpha = (\vec{u}_1, \vec{u}_2)$ where

$$\vec{u}_1 = \begin{pmatrix} 5\\ 3 \end{pmatrix}$$
 and $\vec{u}_2 = \begin{pmatrix} 2\\ 1 \end{pmatrix}$.

In this problem, we compute $[T]_{\alpha}$ directly from the definition.

- a. Show that $\alpha = (\vec{u}_1, \vec{u}_2)$ is a basis of \mathbb{R}^2 .
- b. Determine $T(\vec{u}_1)$ and then use this to compute $[T(\vec{u}_1)]_{\alpha}$.
- c. Determine $T(\vec{u}_2)$ and then use this to compute $[T(\vec{u}_2)]_{\alpha}$.
- d. Using parts (b) and (c), determine $[T]_{\alpha}$.

Problem 3: With the same setup as Problem 2, compute $[T]_{\alpha}$ using Proposition 3.2.6.

Problem 4: Again, use the same setup as in Problem 2. Let

$$\vec{v} = \begin{pmatrix} 1\\ 2 \end{pmatrix}.$$

In this problem, we compute $[T(\vec{v})]_{\alpha}$ in two different ways.

- a. First determine $T(\vec{v})$, and then use this to compute $[T(\vec{v})]_{\alpha}$.
- b. First determine $[\vec{v}]_{\alpha}$, and then multiply the result by your matrix $[T]_{\alpha}$ to compute $[T(\vec{v})]_{\alpha}$.

Problem 5: Consider the unique linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ with

$$[T] = \begin{pmatrix} 3 & 2\\ 4 & -1 \end{pmatrix}$$

Let $\alpha = (\vec{u}_1, \vec{u}_2)$ where

$$\vec{u}_1 = \begin{pmatrix} -4\\ -2 \end{pmatrix}$$
 and $\vec{u}_2 = \begin{pmatrix} 9\\ 4 \end{pmatrix}$

Compute $[T]_{\alpha}$ using any method.

Problem 6: Let A and B be 2×2 matrices. Assume that $A\vec{v} = B\vec{v}$ for all $\vec{v} \in \mathbb{R}^2$. Show that A = B.