Problem Set 18: Due Monday, April 22

Problem 1: Let

$$\alpha = \left(\begin{pmatrix} 1\\3\\2 \end{pmatrix}, \begin{pmatrix} -1\\-3\\0 \end{pmatrix}, \begin{pmatrix} 2\\8\\9 \end{pmatrix} \right)$$

- a. Show that α is a basis of \mathbb{R}^3 .
- b. Determine

$$\left[\begin{pmatrix} 1\\5\\-5 \end{pmatrix} \right]_{\alpha}.$$

Problem 2: Consider the following elements of \mathcal{P}_3 :

- $f_1(x) = x^3$.
- $f_2(x) = x^3 + x^2$.
- $f_3(x) = x^3 + x^2 + x$.
- $f_4(x) = x^3 + x^2 + x + 1$.

Let $\alpha = (f_1, f_2, f_3, f_4)$. a. Show that α is a basis of \mathcal{P}_3 . b. Let $g(x) = 3x^3 + 7x^2 + 7x - 2$. Determine $[g]_{\alpha}$.

Problem 3: Let $W = \{f \in \mathcal{P}_2 : f(1) = 0\}$. In Problem 2 on Writing Assignment 8, you showed that W is a subspace of \mathcal{P}_2 . Let $\alpha = (f_1, f_2)$ where:

- $f_1(x) = x^2 1$.
- $f_2(x) = x 1$.

We then have that $W = \text{Span}(f_1, f_2)$ (this might have been the choice you used for part (b) of that problem; see the solutions to Writing Assignment 8 for a proof).

a. Show that α is linearly independent, and hence is a basis of W.

- b. Determine $\dim(W)$.
- c. Let $g(x) = 3x^2 + 5x 8$. Show that $g \in W$, and determine $[g]_{\alpha}$.

Problem 4: Let V be the vector space of all 2×2 matrices. Let

$$W = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in V : b = c \right\}$$

It can be checked that W is a subspace of V (no need to do this). Find a basis for W, and determine $\dim(W)$.

Problem 5: In Problem 2 on Problem Set 17, you showed that

$$\left(\begin{pmatrix}0\\1\\3\\-1\end{pmatrix},\begin{pmatrix}2\\0\\2\\-1\end{pmatrix},\begin{pmatrix}-8\\2\\-2\\2\end{pmatrix},\begin{pmatrix}6\\-1\\9\\5\end{pmatrix}\right)$$

was linearly dependent. Use your work in that problem to find a basis (with explanation) for the following subspace of \mathbb{R}^4 :

$$W = \operatorname{Span}\left(\begin{pmatrix} 0\\1\\3\\-1 \end{pmatrix}, \begin{pmatrix} 2\\0\\2\\-1 \end{pmatrix}, \begin{pmatrix} -8\\2\\-2\\2 \end{pmatrix}, \begin{pmatrix} 6\\-1\\9\\5 \end{pmatrix}\right).$$