Writing Assignment 5: Due Wednesday, March 6

Problem 1: Suppose that $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a surjective linear transformation and that $\vec{u}_1, \vec{u}_2 \in \mathbb{R}^2$. Show that if $\text{Span}(\vec{u}_1, \vec{u}_2) = \mathbb{R}^2$, then $\text{Span}(T(\vec{u}_1), T(\vec{u}_2)) = \mathbb{R}^2$.

Hint: You are trying to prove that two sets are equal, so you should naturally think about a double containment proof. However, you really need only show that $\mathbb{R}^2 \subseteq \text{Span}(T(\vec{u}_1), T(\vec{u}_2))$, because the other containment is immediate.

Problem 2: Suppose that $T: \mathbb{R}^2 \to \mathbb{R}^2$ is an injective linear transformation and that $\vec{u}, \vec{w} \in \mathbb{R}^2$. Show that if $\vec{w} \notin \text{Span}(\vec{u})$, then $T(\vec{w}) \notin \text{Span}(T(\vec{u}))$.

Problem 3: Does there exist a linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ with Null(T) = range(T)? Explain fully.