Writing Assignment 6: Due Wednesday, March 13

Problem 1: Suppose that $\alpha = (\vec{u}_1, \vec{u}_2)$ and $\beta = (\vec{w}_1, \vec{w}_2)$ are both bases of \mathbb{R}^2 . Show that there exists an invertible 2×2 matrix R such that $[\vec{v}]_{\beta} = R \cdot [\vec{v}]_{\alpha}$ for all $\vec{v} \in \mathbb{R}^2$. Moreover, explicitly describe how to calculate R, and be sure to argue that R is invertible.

Problem 2: Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation, and assume that $T \circ T = T$. Show that range $(T) \cap \text{Null}(T) = \{\vec{0}\}.$

Problem 3: Suppose that $f: \mathbb{R} \to \mathbb{R}$ is a function, and that $f(c \cdot x) = c \cdot f(x)$ for all $c, x \in \mathbb{R}$. Show that there exists an $r \in \mathbb{R}$ such that for all $x \in \mathbb{R}$, we have f(x) = rx.

Note: In this problem, we are looking at functions with domain and codomain \mathbb{R} (rather than \mathbb{R}^2). The hypothesis is saying that f "preserves scalar multiplication", so long as you interpret a number as a 1-dimensional vector. Thus, this problem is saying that every function $f: \mathbb{R} \to \mathbb{R}$ that preserves scalar multiplication is one of the boring ones, like f(x) = 2x, f(x) = -5x, or $f(x) = \pi x$.