Writing Assignment 9: Due Wednesday, April 24

Problem 1: Let V be a vector space, and let U and W be subspaces of V. Recall from Writing Assignment 8 that

$$U+W=\{\vec{v}\in V: \text{There exists } \vec{u}\in U \text{ and } \vec{w}\in W \text{ with } \vec{v}=\vec{u}+\vec{w}\}.$$

Assume that $(\vec{u}_1, \ldots, \vec{u}_m)$ is a basis of U and that $(\vec{w}_1, \ldots, \vec{w}_n)$ is a basis of W.

- a. Show that $U + W = \operatorname{Span}(\vec{u}_1, \dots, \vec{u}_m, \vec{w}_1, \dots, \vec{w}_n)$.
- b. Show that $\dim(U+W) \leq \dim(U) + \dim(W)$.

Problem 2: Let V be a vector space, and let $\vec{u}, \vec{w} \in V$. Show that (\vec{u}, \vec{w}) is linearly dependent if and only if either $\vec{u} = \vec{0}$ or $\vec{w} \in \operatorname{Span}(\vec{u})$.