Problem Set 15: Due Monday, April 6

Problem 1: Let V be a vector space, and let W be a subspace of V. Recall that

$$V\backslash W=\{\vec{v}\in V:\vec{v}\notin W\},$$

i.e. $V \setminus W$ is the set of elements of V that are *not* in W. Is $V \setminus W$ always a subspace of V? Sometimes a subspace of V? Never a subspace of V? Explain.

Problem 2: Use Gaussian Elimination to solve the following system:

Problem 3: Find the coefficients $a, b, c \in \mathbb{R}$ so that the graph of $f(x) = ax^2 + bx + c$ passes through the points (1, 2), (-1, 6), and (2, 3).

Problem 4: Is

$$\begin{pmatrix} 20\\0\\5\\10 \end{pmatrix} \in \operatorname{Span}\left(\begin{pmatrix} 0\\2\\1\\1 \end{pmatrix}, \begin{pmatrix} 4\\-2\\0\\1 \end{pmatrix}, \begin{pmatrix} 1\\1\\1\\-1 \end{pmatrix} \right)?$$

Explain.

Problem 5: Give a parametric description of the solution set of the following system:

Problem 6: Solve the following three systems simultaneously:

Notice that the coefficients of x and y are the same, so you should code these simultaneously as one matrix, and go to reduced echelon form (see p. 181-182 of the course notes).