Problem Set 18: Due Monday, April 20

Problem 1: Let

$$\alpha = \left(\begin{pmatrix} 1\\3\\2 \end{pmatrix}, \begin{pmatrix} -1\\-3\\0 \end{pmatrix}, \begin{pmatrix} 2\\8\\9 \end{pmatrix} \right)$$

a. Show that α is a basis of \mathbb{R}^3 .

b. Determine

$$\left[\begin{pmatrix} 1\\5\\-5 \end{pmatrix} \right]_{\alpha}.$$

Problem 2: Consider the following elements of \mathcal{P}_3 :

- $f_1(x) = x^3$.
- $f_2(x) = x^3 + x^2$.
- $f_3(x) = x^3 + x^2 + x$.
- $f_4(x) = x^3 + x^2 + x + 1$.

Let $\alpha = (f_1, f_2, f_3, f_4)$. a. Show that α is a basis of \mathcal{P}_3 . b. Let $g(x) = 3x^3 + 7x^2 + 7x - 2$. Determine $[g]_{\alpha}$.

Problem 3: Working in \mathbb{R}^4 , let

$$W = \operatorname{Span}\left(\begin{pmatrix}0\\0\\1\\3\end{pmatrix}, \begin{pmatrix}4\\5\\2\\7\end{pmatrix}, \begin{pmatrix}7\\8\\0\\1\end{pmatrix}\right).$$

Explain why $\dim(W) = 3$.

Problem 4: Working in \mathbb{R}^4 , let

$$W = \text{Span}\left(\begin{pmatrix}1\\3\\0\\2\end{pmatrix}, \begin{pmatrix}2\\6\\1\\-1\end{pmatrix}, \begin{pmatrix}3\\9\\1\\1\end{pmatrix}, \begin{pmatrix}1\\3\\-1\\7\end{pmatrix}, \begin{pmatrix}-4\\-7\\0\\-3\end{pmatrix}\right).$$

a. Find (with explanation) a basis for W.

b. Determine $\dim(W)$.

Problem 5: Let V be the vector space of all 2×2 matrices. Let

$$W = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in V : b = c \right\}.$$

It can be checked that W is a subspace of V (no need to do this). Find a basis for W, and determine $\dim(W)$.