Problem Set 5: Due Monday, February 10

Problem 1: Each of the following is an *attempted* description of a set, but some of them do not make sense. In each part, explain whether the definition is valid or not. When it is a valid description, give 3 specific elements of the corresponding set.

```
a. \{n^2 + 19m : n, m \in \mathbb{N}\}.
b. \{x \in \mathbb{Q} : x^2 + 5x - 3\}.
c. \{n \in \mathbb{Z} : 5 < 2^n \text{ and } 10n < 81\}.
d. \{x^2 + 6 \in \mathbb{R} : x - 1 > 0\}.
```

Problem 2: Let $f: \mathbb{R} \to \mathbb{R}$ be given by $f(x) = x^3 - 8x$. Show that f is not injective.

Problem 3: Define a function $f: \{0, 1, 2, 3, 4\} \to \{0, 1, 2, 3, 4\}$ as follows. On input $n \in \{0, 1, 2, 3, 4\}$, let f(n) be the remainder that arises when you divide the number 3n by 5. Is f injective, surjective, both, or neither? Explain.

Problem 4: Let $A = \{1, 2\}$. Give an example, with explanation, of two functions $f: A \to A$ and $g: A \to A$ such that $f \circ g \neq g \circ f$.

Problem 5: Consider the function $f: \mathbb{Q} \to \mathbb{Q}$ given by f(a) = 3a + 2. We clearly have $\operatorname{range}(f) \subseteq \mathbb{Q}$ by definition. Thus, to show that $\mathbb{Q} = \operatorname{range}(f)$, it suffices to show that $\mathbb{Q} \subseteq \operatorname{range}(f)$. To do this, we need to show how to take an arbitrary $b \in \mathbb{Q}$, and fill in the blank in $f(\underline{\hspace{1cm}}) = b$ with an element of \mathbb{Q} . In this problem, we first do a few examples, and then handle a general b.

- a. Fill in the blank in $f(\underline{}) = 2$ with an element of \mathbb{Q} .
- b. Fill in the blank in $f(\underline{}) = -19$ with an element of \mathbb{Q} .
- c. Fill in the blank in $f(\underline{}) = 55$ with an element of \mathbb{Q} .
- d. Let $b \in \mathbb{Q}$ be arbitrary. Fill in the blank in $f(\underline{\hspace{1cm}}) = b$ with an element of \mathbb{Q} (your answer will depend on b), and justify that your choice works.

Problem 6: Determine if the three lines described by the equations 2x+y=5, 7x-2y=1, and -5x+3y=4 intersect. That is, determine whether there exists a point that lies on all three of the corresponding lines. Explain your reasoning using a few sentences.