Problem Set 6: Due Friday, February 14

Problem 1: For each part, explain your reasoning using a sentence or two.

- a. Find an example of $\vec{u} \in \mathbb{R}^2$ such that the solution set of 5x + 3y = 0 is $\mathrm{Span}(\vec{u})$.
- b. Find an example of a choice for $a, b, c \in \mathbb{R}$ such that the solution set of ax + by = c is Span $\begin{pmatrix} 2 \\ -7 \end{pmatrix}$.
- c. Find an example of a choice for $\vec{v}, \vec{u} \in \mathbb{R}^2$ such that the solution set to -x + 9y = -6 is $\{\vec{v} + t\vec{u} : t \in \mathbb{R}\}$.

Problem 2: Verify part (8) of Proposition 2.2.1. That is, show that for all $\vec{v} \in \mathbb{R}^2$ and all $r, s \in \mathbb{R}$, we have $(r+s) \cdot \vec{v} = r \cdot \vec{v} + s \cdot \vec{v}$.

Problem 3: Fill in the blanks below with appropriate phrases so that the result is a correct proof of the statement following statement: If $\vec{u}, \vec{w} \in \mathbb{R}^2$ and $\vec{w} \in \operatorname{Span}(\vec{u})$, then $\operatorname{Span}(\vec{w}) \subseteq \operatorname{Span}(\vec{u})$. Please write out the whole proof, and either underline or highlight the parts that you are adding.

Let $\vec{v} \in \operatorname{Span}(\vec{w})$ be arbitrary. By assumption, we know that $\vec{w} \in \operatorname{Span}(\vec{u})$, so we can ______. Since $\vec{v} \in \operatorname{Span}(\vec{w})$, we can ______. Since _____ $\in \mathbb{R}$, we conclude that $\vec{v} \in \operatorname{Span}(\vec{u})$.

Problem 4: Let $\vec{u}, \vec{v}_1, \vec{v}_2 \in \mathbb{R}^2$, and suppose that $\vec{v}_1, \vec{v}_2 \in \text{Span}(\vec{u})$. Show that if $\vec{v}_1 \neq \vec{0}$, then there exists $r \in \mathbb{R}$ with $\vec{v}_2 = r \cdot \vec{v}_1$.

Note: You have to use the fact that $\vec{v}_1 \neq \vec{0}$ somewhere, so explicitly point out where you are using that assumption.

Problem 5:

a. Show that

$$\left(\begin{pmatrix}1\\-4\end{pmatrix},\begin{pmatrix}2\\3\end{pmatrix}\right)$$

is a basis of \mathbb{R}^2 .

b. Explicitly compute the unique values of $c_1, c_2 \in \mathbb{R}$ with

$$\begin{pmatrix} 12 \\ 7 \end{pmatrix} = c_1 \cdot \begin{pmatrix} 1 \\ -4 \end{pmatrix} + c_2 \cdot \begin{pmatrix} 2 \\ 3 \end{pmatrix}.$$

c. Explicitly compute the unique values of $c_1, c_2 \in \mathbb{R}$ with

$$\begin{pmatrix} 13\\25 \end{pmatrix} = c_1 \cdot \begin{pmatrix} 1\\-4 \end{pmatrix} + c_2 \cdot \begin{pmatrix} 2\\3 \end{pmatrix}.$$

Problem 6: Find, with explanation, all values of $c \in \mathbb{R}$ such that

$$\left(\begin{pmatrix} c-3\\1 \end{pmatrix}, \begin{pmatrix} 10\\c \end{pmatrix} \right)$$

is a basis of \mathbb{R}^2 .