Problem Set 8: Due Monday, February 24

Problem 1: Consider the unique linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ such that

$$T\left(\begin{pmatrix}9\\4\end{pmatrix}\right) = \begin{pmatrix}1\\-5\end{pmatrix}$$
 and $T\left(\begin{pmatrix}2\\1\end{pmatrix}\right) = \begin{pmatrix}-2\\3\end{pmatrix}$.

Determine, with explanation, the value of

$$T\left(\begin{pmatrix} 6\\2 \end{pmatrix}\right).$$

Problem 2: Compute

$$\begin{pmatrix} 4 & 3 \\ -7 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 5 \end{pmatrix}.$$

Describe what your computation means in terms of a linear transformation. Use Problem 1 above as a guide.

Problem 3: Define $T: \mathbb{R}^2 \to \mathbb{R}^2$ by letting $T(\vec{v})$ be the point on the line y = x + 1 that is closest to \vec{v} . Is T is a linear transformation? Explain.

Problem 4: Consider the unique linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ such that

$$T\left(\begin{pmatrix}1\\-1\end{pmatrix}\right) = \begin{pmatrix}1\\4\end{pmatrix}$$
 and $T\left(\begin{pmatrix}-2\\3\end{pmatrix}\right) = \begin{pmatrix}2\\7\end{pmatrix}$.

What is [T]? Explain.

Problem 5: Suppose that $T: \mathbb{R}^2 \to \mathbb{R}^2$ and $S: \mathbb{R}^2 \to \mathbb{R}^2$ are both linear transformations. Show that $T \circ S: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation.

Problem 6: For each of following, consider the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ that has the given matrix as its standard matrix. Describe the action of T geometrically. It may help to plug in a few points and/or make some case distinctions. $\begin{pmatrix} 1 & 0 \end{pmatrix}$

a.
$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

b. $\begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix}$ for a fixed $k \in \mathbb{R}$ with $k > 0$.
c. $\begin{pmatrix} k & 0 \\ 0 & 1 \end{pmatrix}$ for a fixed $k \in \mathbb{R}$ with $k > 0$.