Writing Assignment 1: Due Wednesday, January 29

Problem 1: Determine whether the following statements are true or false. In all cases, explain your reasoning thoroughly in complete sentences.

a. There exists $m, n \in \mathbb{Z}$ such that 34m + 30n = 2.

- b. There exists $m, n \in \mathbb{N}$ such that 5m + 9n = 16.
- c. For all $a \in \mathbb{R}$, we have $a^6 4a^3 + 9 \ge 3$.

Problem 2: Define a function $f : \mathbb{R}^2 \to \mathbb{R}^2$ by letting

$$f\left(\begin{pmatrix}x\\y\end{pmatrix}\right) = \begin{pmatrix}x-y\\x+y\end{pmatrix}.$$

Think of f as transforming the plane as we discussed in class, and as illustrated on p. 9 of the course notes. As discussed there, it appears that f rotates the plane 45° counterclockwise and simultaneously scales the plane by a factor of $\sqrt{2}$. In this problem, you will verify some of these statements.

a. Show that for all $\vec{v} \in \mathbb{R}^2$, we have $||f(\vec{v})|| = \sqrt{2} \cdot ||\vec{v}||$, where $||\vec{v}||$ is the length of \vec{v} .

b. Show that for all nonzero $\vec{v} \in \mathbb{R}^2$, the angle between \vec{v} and $f(\vec{v})$ is 45°.

c. Parts (a) and (b) give two possibilities of $f(\vec{v})$, since it might be clockwise or counterclockwise relative to \vec{v} . Think about how you check that it is counterclockwise, and try to verify it.

Hint: Think about using some of the vector operations you learned in Calculus II for parts (b) and (c).