Problem Set 11: Due Monday, March 4

Problem 1: In this problem, let 0 denote the 2×2 zero matrix, i.e. the 2×2 matrix where all four entries are 0.

a. Give an example of a nonzero 2×2 matrix A with $A \cdot A = 0$.

b. Show that there does not exist an invertible 2×2 matrix A with $A \cdot A = 0$.

Hint: Suppose that you are working in the world of real numbers. How would you convince yourself that if $x^2 = 0$, then x would have to be 0? If $x \neq 0$, what can you do to both sides?

Problem 2: Find a 2×2 matrix A with

$$A \cdot A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$

Hint: Working computationally is not advised. Think about a linear transformation that you can apply to the plane so that when you do it twice, you end up sending (1,0) to (0,1) and sending (0,1) to (-1,0).

Problem 3: Let A, B, C all be invertible 2×2 matrices. Must there exist a 2×2 matrix X with

$$A(X+B)C = I?$$

Either justify carefully or give a counterexample.

Hint: Again, consider working in the world of numbers. If you have nonzero real numbers a, b, and c, must there exist a real number x with a(x+b)c = 1? If so, what is it? And how would you justify that it works?

Problem 4: Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the unique linear transformation with

$$[T] = \begin{pmatrix} 7 & -9 \\ -3 & 4 \end{pmatrix}.$$

Explain why T has an inverse and calculate

$$T^{-1}\left(\begin{pmatrix}5\\1\end{pmatrix}\right).$$

Problem 5: Consider the following system of equations:

a. Rewrite the above system in the form $A\vec{v} = \vec{b}$ for some matrix A and vector \vec{b} .

b. Explain why A is invertible and calculate A^{-1} .

c. Use A^{-1} to solve the system.

Problem 6: Let

$$\alpha = \left(\begin{pmatrix} -1\\2 \end{pmatrix}, \begin{pmatrix} 5\\1 \end{pmatrix} \right).$$

a. Show that α is a basis for \mathbb{R}^2 . b. Compute $\begin{bmatrix} 5\\1 \end{bmatrix}$.

c. Compute $\begin{bmatrix} 8 \\ 17 \end{bmatrix}_{\alpha}^{\alpha}$.

In each part, briefly explain how you carried out your computation.