Problem Set 7: Due Friday, February 16

Problem 1:

a. Show that

$$\left(\begin{pmatrix} 1\\-4 \end{pmatrix}, \begin{pmatrix} 2\\3 \end{pmatrix} \right)$$

is a basis of \mathbb{R}^2 .

b. Explicitly compute the unique values of $c_1,c_2\in\mathbb{R}$ with

$$\begin{pmatrix} 12\\7 \end{pmatrix} = c_1 \cdot \begin{pmatrix} 1\\-4 \end{pmatrix} + c_2 \cdot \begin{pmatrix} 2\\3 \end{pmatrix}.$$

c. Explicitly compute the unique values of $c_1,c_2\in\mathbb{R}$ with

$$\begin{pmatrix} 13\\25 \end{pmatrix} = c_1 \cdot \begin{pmatrix} 1\\-4 \end{pmatrix} + c_2 \cdot \begin{pmatrix} 2\\3 \end{pmatrix}.$$

Problem 2: Find, with explanation, all values of $c \in \mathbb{R}$ such that

$$\left(\begin{pmatrix} c-3\\1 \end{pmatrix}, \begin{pmatrix} 10\\c \end{pmatrix} \right)$$

is a basis of \mathbb{R}^2 .

Problem 3: Let

$$A = \left\{ \begin{pmatrix} 3 \\ -1 \end{pmatrix} + c \cdot \begin{pmatrix} 1 \\ 4 \end{pmatrix} : c \in \mathbb{R} \right\} \quad \text{and} \quad B = \left\{ \begin{pmatrix} 5 \\ 7 \end{pmatrix} + c \cdot \begin{pmatrix} 1 \\ 4 \end{pmatrix} : c \in \mathbb{R} \right\}.$$

In this problem, we will work through the outline of how to show that A = B via a double containment proof.

a. Let's show that $A \subseteq B$. Let $\vec{u} \in A$ be arbitrary. By definition of A, we can fix $c \in \mathbb{R}$ with

$$\vec{u} = \begin{pmatrix} 3\\-1 \end{pmatrix} + c \cdot \begin{pmatrix} 1\\4 \end{pmatrix}.$$

To show that $\vec{u} \in B$, we have to fill in the blank of

$$\vec{u} = \begin{pmatrix} 5\\7 \end{pmatrix} + \underline{\qquad} \cdot \begin{pmatrix} 1\\4 \end{pmatrix}$$

with a real number. What real number (that depends on c) works? Justify your choice.

b. Let's show that $B \subseteq A$. Let $\vec{u} \in B$ be arbitrary. By definition of B, we can fix $c \in \mathbb{R}$ with

$$\vec{u} = \begin{pmatrix} 5\\7 \end{pmatrix} + c \cdot \begin{pmatrix} 1\\4 \end{pmatrix}.$$

To show that $\vec{u} \in A$, we have to fill in the blank of

$$\vec{u} = \begin{pmatrix} 3\\-1 \end{pmatrix} + \underline{\qquad} \cdot \begin{pmatrix} 1\\4 \end{pmatrix}$$

with a real number. What real number (that depends on c) works? Justify your choice.

Problem 4: In each of the following cases, determine whether the given function $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation. If yes, explain why. If no, provide an explicit counterexample.

a.
$$T\left(\begin{pmatrix}x\\y\end{pmatrix}\right) = \begin{pmatrix}2x+7y\\5x-4y\end{pmatrix}$$
.
b. $T\left(\begin{pmatrix}x\\y\end{pmatrix}\right) = \begin{pmatrix}xy\\x+y\end{pmatrix}$.
c. $T\left(\begin{pmatrix}x\\y\end{pmatrix}\right) = \begin{pmatrix}y\sin^2(x^3) + y\cos^2(x^3))\\y\end{pmatrix}$.

Problem 5: Consider the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ given by

$$T\left(\binom{x}{y}\right) = \binom{2x-y}{-5x+3y}.$$

Show that

$$\begin{pmatrix} -18\\47 \end{pmatrix} \in \mathsf{range}(T)$$

by explicitly finding $\vec{v} \in \mathbb{R}^2$ with

$$T(\vec{v}) = \begin{pmatrix} -18\\47 \end{pmatrix}.$$