Writing Assignment 4: Due Wednesday, February 28

Problem 1: Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation. Recall that

range $(T) = \{ \vec{w} \in \mathbb{R}^2 : \text{There exists } \vec{v} \in \mathbb{R}^2 \text{ with } \vec{w} = T(\vec{v}) \}.$

Notice that $\vec{0} \in \operatorname{range}(T)$ because we know that $T(\vec{0}) = \vec{0}$ by Proposition 2.4.2. a. Show that if $\vec{w}_1, \vec{w}_2 \in \operatorname{range}(T)$, then $\vec{w}_1 + \vec{w}_2 \in \operatorname{range}(T)$. b. Show that if $\vec{w} \in \operatorname{range}(T)$ and $c \in \mathbb{R}$, then $c\vec{w} \in \operatorname{range}(T)$.

Problem 2: Let $\vec{u}_1, \vec{u}_2, \vec{u}_3 \in \mathbb{R}^2$. Show that at least one of the \vec{u}_i is in the span of the other two. That is show that either $\vec{u}_1 \in \text{Span}(\vec{u}_2, \vec{u}_3)$, or $\vec{u}_2 \in \text{Span}(\vec{u}_1, \vec{u}_3)$, or $\vec{u}_3 \in \text{Span}(\vec{u}_1, \vec{u}_2)$. *Hint:* Do some cases. What can you conclude if (\vec{u}_1, \vec{u}_2) is a basis of \mathbb{R}^2 ? If not, what does Theorem 2.3.10 tell you about \vec{u}_1 and \vec{u}_2 ?

Problem 3: We defined linear transformations from \mathbb{R}^2 to \mathbb{R}^2 , but we can also define them from \mathbb{R} to \mathbb{R} as follows. A linear transformation from \mathbb{R} to \mathbb{R} is a function $f: \mathbb{R} \to \mathbb{R}$ with both of the following properties:

- f(x+y) = f(x) + f(y) for all $x, y \in \mathbb{R}$.
- $f(c \cdot x) = c \cdot f(x)$ for all $c, x \in \mathbb{R}$.

Given any $r \in \mathbb{R}$, it is straightforward to check that the function $g_r \colon \mathbb{R} \to \mathbb{R}$ given by $g_r(x) = rx$ is a linear transformation (no need to do this). Show that these are the only linear transformations from \mathbb{R} to \mathbb{R} . In other words, show that if $f \colon \mathbb{R} \to \mathbb{R}$ is a linear transformation, then there exists $r \in \mathbb{R}$ with $f = g_r$. *Hint:* Suppose that $f \colon \mathbb{R} \to \mathbb{R}$ is a linear transformation. If you know f(1), can you determine f(4)? How about $f(\pi)$?