Homework 1 : Due Friday, September 2

Problem 1: Let $a, b, c \in \mathbb{Z}$. For each of the following, either prove or find a counterexample.

- a. If $ab \mid c$, then $a \mid c$ and $b \mid c$.
- b. If $a \mid bc$, then either $a \mid b$ or $a \mid c$.
- c. If $a \mid b$ and $a \nmid c$, then $a \nmid (b + c)$.
- d. If $ac \mid bc$, then $a \mid b$. Be careful!

Problem 2: Show that $6 \mid (2n^3 + 3n^2 + n)$ for all $n \in \mathbb{N}$.

Problem 3: Define a sequence recursively by letting $a_0 = 39$ and

$$a_{n+1} = a_n^2 - 5a_n + 12$$

Show that $3 \mid a_n$ for all $n \in \mathbb{N}$.

Problem 4: Let $r \in \mathbb{R}$ with $r \neq 1$. Use induction to show that

$$1 + r + r^{2} + \dots + r^{n} = \frac{1 - r^{n+1}}{1 - r}$$

for all $n \in \mathbb{N}$.

Problem 5: Show that

$$1^{3} + 2^{3} + \dots + n^{3} = (1 + 2 + \dots + n)^{2}$$

for all $n \in \mathbb{N}^+$.

Problem 6: Find a formula for

$$\sum_{k=1}^{n} (-1)^{k-1} (2k-1) = 1 - 3 + 5 - 7 + 9 - \dots + (-1)^{n-1} (2n-1)$$

and prove that your formula is correct for all $n \in \mathbb{N}^+$.