Homework 14 : Due Wednesday, April 25

Problem 1:

a. Let $n \ge 2$. Let G be a simple graph on n vertices with at least n edges. Show that G contains a cycle. b. Show that if G is a simple graph on $n \ge 5$ vertices, then at least one of G or \overline{G} has a cycle.

Problem 2: Recall the graph Q_n from Problem 2 on Homework 11. Show that Q_n is bipartite.

Problem 3: Let G be the following simple graph. Let V_G be the set of subsets of [5] of size 2. For the edge set E, include an edge with endpoints u and w exactly when u and w are disjoint subsets of [5] (i.e. exactly when they have no elements in common). Determine $\chi(G)$.

Problem 4: Given $n \in \mathbb{N}$ with $n \geq 3$, let C_n be the simple graph with vertex set [n] where 1 and n are adjacent and also k and k + 1 are adjacent whenever $1 \leq k \leq n - 1$ (so C_n is just a cycle of length n). Determine the smallest possible maximal matching in C_{3k} for each $k \in \mathbb{N}^+$.

Problem 5: Show that a tree has at most one perfect matching. *Hint:* Given two perfect matchings, think about the symmetric difference.

Problem 6: Let T be a tree.

a. Show that T is bipartite.

b. Show that given any valid 2-coloring of the vertices of T, there exists a leaf in the larger of the two color classes (and a leaf in each if both colors are used the same number of times). *Hint for b:* Think about the sum of the degrees in each color class.