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1 Introduction

1.1 Sets and Sequences

Recall that a set is a collection of elements without regard to repetition and order. Intuitively, a set is a box
and the only thing that matters are the things that are inside it, and furthermore the box does not have
more than 1 of any given item. For example, {2, 5} is a set with 2 elements. Since all that matters are the
elements, we define two sets to be equals if they have the same elements, regardless of how the sets themselves
are defined. For example, the set {n ∈ N : n is an even prime} equals the set {n ∈ N : 3 < n2 < 8} even
though the descriptions are very different. Similarly, since order doesn’t matter, we have {3, 7} = {7, 3} and
{1, 2, 3} = {3, 1, 2}. Although we typically would not even write something like {2, 5, 5}, if we choose to do
so then we would have {2, 5, 5} = {2, 5}.

We use ∈ to represent membership. Thus, we have 2 ∈ {2, 5} and 3 /∈ {2, 5}. Since sets are mathematical
objects, they may be elements of other sets. For example, we can form the set S = {1, {2, 3}}. Notice that
we have 1 ∈ S and {2, 3} ∈ S, but 2 /∈ S and 3 /∈ S. As a result, S has only 2 elements, namely 1 and
{2, 3}. Thinking of a set as a box, one element of S is the number 1, and the other is a different box. The
empty set is the unique set with no elements. We can write it as {}, but instead we typically denote it by
∅. There is only one empty set, because if both A and B have no elements, they they have the exactly the
same elements for vacuous reasons, and hence A = B.

Sets can be either finite or infinite. Some examples of infinite sets are the standard “universes” of
numbers.

Notation 1.1. We use the following notation for the basic sets of numbers.

• N = {0, 1, 2, 3, . . . } is the set of natural numbers.

• N+ = {1, 2, 3, . . . } is the set of positive natural numbers.

• Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . } is the set of integers.

• Q = {ab : a, b ∈ Z and b 6= 0} is the set of rational numbers.

• R is the set of real numbers.

Beyond these fundamental sets, there are various ways to define new sets. In some cases, we can simply
the list the elements as we did above. Although this often works for small finite sets, it is almost never a
good idea to list the elements of a set with 20 or more elements, and it rarely works for infinite sets (unless
there is an obvious pattern like {5, 10, 15, 20, . . . }). One of the standard ways to define a set S is to carve it
out of some bigger set A by describing a certain property that may or may not be satisfied by an element
of A. We did this above with {n ∈ N : 3 < n2 < 8}, but let’s look at a simpler example. Suppose that we
define.

S = {n ∈ N : 5 < n < 13}.
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In this case, we are taking A = N, and forming a set S by carving out those elements of A that satisfy the
condition that 5 < n < 13. Thus, we have

S = {6, 7, 8, 9, 10, 11, 12}.

In this case, it is important that we put the “N” in the above, because if we wrote {n : 5 < n < 13} then
it would be unclear what n we should consider. For example, should 11

2 be in this set? How about
√

11?
Sometimes the “universe” of numbers (or other mathematical objects) that we are working within is clear,
but typically it is best to write the global set that you are picking elements from in order to avoid such
ambiguity. Notice that when we define a set, there is no guarantee that it has any elements. For example,
{n ∈ N : n2 = 2} = ∅. Keep in mind that we can also use words in our description of sets, as we did with
{n ∈ N : n is an even prime}.

Another way to describe a set is through a “parametric” description. Rather than carving out a certain
subset of a given set by describing a property that the elements must satisfy, we can instead form all the
elements one obtains by varying a value through a particular set. For example, consider the following
description of a set:

S = {3x2 + 1 : x ∈ R}

Although the notation looks quite similar to the above (in both case we have curly braces, with a : in the
middle), this set is described differently. Notice that the “formula” or “description” appears on the left of
the :, while the set that the variable is coming from appears on the right. The idea here is that instead of
carving out a subset of R by using a property, we instead let x vary through all real numbers, plug each of
these real numbers x into 3x2 + 1, and form the set of all possible outputs. For example, we have 4 ∈ S
because 4 = 3 · 12 + 1. In other words, when x = 1, the left hand side gives the value 4, so we should put
4 ∈ S. Notice also that 4 = 3 · (−1)2 + 1, so we can also see that 4 ∈ S because of the “witness” −1. Of
course, we are forming a set, so we do not repeat the number 4. We also have 1 ∈ S because 1 = 3 · 02 + 1,
and we have 76 ∈ S because 76 = 3 · 52 + 1. Notice also that 7 ∈ S because 7 = 3 · (

√
2)2 + 1.

Now it is possible and indeed straightforward to turn any parametric description of a set into one where
we carve out a subset by a property. In our case of S = {3x2 + 1 : x ∈ R} above, we can alternatively write
it as

S = {y ∈ R : There exists x ∈ R with y = 3x2 + 1}

Notice how we flipped the way we described by the set by introducing a “there exists” quantifier. This is
always possible for a parametric description. For example, we have

{5n+ 4 : n ∈ N} = {m ∈ N : There exists n ∈ N with m = 5n+ 4}

Thus, these parametric descriptions are not essentially new ways to describe sets, but they can be more
concise and hence clear.

By the way, we can use multiple parameters in our description. For example, consider the set

S = {18m+ 33n : m,n ∈ Z}

Now we are simply letting m and n vary through all possible values in Z and collecting all of the values
18m+ 33n that result. For example, we have 15 ∈ S because 15 = 18 · (−1) + 33 · 1. We also have 102 ∈ S
because 102 = 18 · 2 + 33 · 2. Notice that we are varying m and n independently, so they might take different
values, or the same value (as in the case of m = n = 2). Don’t be fooled by the fact that we used different
letters! As above, we can flip this description around as above by writing

S = {k ∈ Z : There exists m,n ∈ Z with k = 18m+ 33n}
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1.2 Subsets and Set Equality

We write A ⊆ B to mean that every element of A is an element of B. More formally, A ⊆ B means that for
all x, if x ∈ A, then x ∈ B. Written more succinctly, A ⊆ B means that for all a ∈ A, we have that a ∈ B.
Since two sets are equal exactly when they have the same elements, notice that A = B if and only if both
A ⊆ B and B ⊆ A.

To prove that A ⊆ B, one takes a completely arbitrary a ∈ A, and argues that a ∈ B. For example, let
A = {6n : n ∈ Z} and let B = {2n : n ∈ Z}. Since both of these sets are infinite, we can’t show that A ⊆ B
by taking each element of A in term and showing that it is an element of B. Instead, we take an arbitrary
a ∈ A, and show that a ∈ B. Here’s the proof.

Proposition 1.2. Let A = {6n : n ∈ Z} and B = {2n : n ∈ Z}. We have A ⊆ B.

Proof. Let a ∈ A be arbitrary. By definition of A, this means that we can fix an m ∈ Z with a = 6m. Notice
then that a = 2 · (3m). Since 3m ∈ Z, it follows that a ∈ B. Since a ∈ A we arbitrary, we conclude that
A ⊆ B.

Make sure that you understand that logic of the argument above. First, we took an arbitrary element a
from the set A. Now in the definition of A = {6n : n ∈ Z}, the n is varying over all integers. Since a ∈ A,
there must be one fixed integer value of n that puts a into the set A. In our proof, we chose to call that one
fixed integer m. This was an arbitrary choice of name, and we could have chosen almost any other name
for it. We could have called it `, k, b, x, or α. The only really awful choice would be to call it a, because
we have already given the letter a a meaning (namely as our arbitrary element of a). We could even have
called it n, and in the future we will likely do this. However, to avoid confusion in our first arguments, we’ve
chosen to use a different letter so that we keep straight in our mind the varying n in the definition of the set
and the particular integer m that puts our one fixed (but arbitrary) a into the set A.

Now we have our a and we’ve fixed an integer m with a = 6m. To show that a ∈ B, we need to come
up with an integer n ∈ Z such that a = 2n. Notice that this n might have little or nothing to do with the
m that put a into the set A. There is absolutely no reason at all to think that the n that works might be
our special m. In fact, in our case, that is certainly too much to hope for because 12 ∈ A by witness n = 2,
and 12 ∈ B by witness n = 6 (and of course 2 6= 6). So how do we go about finding an n such that a = 2n?
Well, the only thing that we know about our a is that a = 6m. Using this knowledge, we think about how
we can insert a 2 into the mix. Of course, we know that 6 = 2 · 3. Thus, since a = 6m, we can also write
a = (2 · 3) ·m = 2 · (3m). Don’t panic from the fact that we have 3m rather than a single “letter” like n
here! After all, the n is just a dummy variable whose name doesn’t matter! We had an honest fixed m ∈ Z
with a = 6m, and we succeeded in finding an integer n with a = 2m, namely n = 3m. The only thing we
need check is that 3m really is an integer, but that is the case because m is an integer. Therefore, we were
successful in show that a ∈ B because we have found an integer n such that a = 2n.

What would go wrong if we tried to prove that B ⊆ A? Let’s try it. Let b ∈ B be arbitrary. Since b ∈ B,
we can fix m ∈ Z with b = 2m. Now our goal is to try to prove that we can find n ∈ Z with b = 6n. It’s
not obvious how to obtain a 6 from that 2, but perhaps we come up with the following idea. Since b = 2m
and 2 = 6

3 , we can write b = 6 · m3 . At this point we celebrate because we have found an n with b = 6n.
Woohoo! Pause for a minute and think about what the problem is. We have indeed found a number n such
that b = 6n. However, we have not checked that this n is an integer. In general, dividing an integer by 3
does not result in an integer, so this argument currently has a hole in it.

Although that argument has a problem, we can not immediately conclude that B 6⊆ A. Our failure to
find an argument does not mean that an argument does not exist. So how can we show that B 6⊆ A. All
that we need to do is find just one example of an element of B that is not an element of A. We choose as
our example to take 2. However, we need to convince everybody that this choice works. So let’s do it! First,
notice that 2 = 2 · 1, so 2 ∈ B because 1 ∈ Z. We now need show that 2 /∈ A, and we’ll do this using a proof
by contradiction. Suppose instead that 2 ∈ A. Then, by definition, we can fix an m ∈ Z with 2 = 6m. We
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then have that m = 2
6 = 1

3 . However, this a contradiction because 1
3 /∈ Z. Since our assumption that 2 ∈ A

led to a contradiction, we conclude that 2 /∈ A. We found an example of an element that is in B but not in
A, so we conclude that B 6⊆ A.

Since A = B if and only both A ⊆ B and B ⊆ A, we can prove that two sets are equal by doing two proofs
like the above. Such a strategy is called a proof by “double containment”. You will have some examples of
this on the homework.

1.3 Ordered Pairs and Sequences

In contrast to sets, we define ordered pairs in such a way that order and repetition do matter. We denote an
ordered pair using normal parentheses rather than curly braces. For example, we let (2, 5) be the ordered
pair whose first element is 2 and whose second element is 5. Notice that we have (2, 5) 6= (5, 2) despite
the fact that {2, 5} = {5, 2}. Make sure to keep a clear distinction between the ordered pair (2, 5) and the
set {2, 5}. We do allow the possibility of creating something like (2, 2), and here the repetition of 2’s is
meaningful. Furthermore, we do not use ∈ in ordered pairs, so we would not write 2 ∈ (2, 5). We’ll talk
about ways to refer to the two elements of an ordered pair later.

We can generalize ordered pairs to the possibility of having more than 2 elements. In this case, we have
an ordered list of n elements, so something like (5, 4, 5,−2). We use call such an object an n-tuple, a list
with n elements, or a finite sequence of length n. Thus, for example, we could call (5, 4, 5,−2) a 4-tuple. It
is also possible to have infinite sequences (i.e. infinite lists), but we will wait to discuss these when the time
comes.

1.4 Operations on Sets and Sequences

Aside from listing elements, carving out subsets of a given set using a given property, and giving a parametric
description (which as mentioned above is just a special case of the previous type), there are other ways to
build sets.

Definition 1.3. Given two sets A and B, we define

A ∪B = {x : x ∈ A or x ∈ B}

and call this set the union of A and B.

Here, as in mathematics generally, we use or to mean “inclusive or”. In other words, if x is an element
of both A and B, then we still put x into A ∪B. Here are a few examples (we leave the proofs of the latter
results until we have more theory):

• {1, 2, 7} ∪ {4, 9} = {1, 2, 4, 7, 9}.

• {1, 2, 3} ∪ {2, 3, 5} = {1, 2, 3, 5}.

• {2n : n ∈ N} ∪ {2n+ 1 : n ∈ N} = N.

• {2n : n ∈ N+} ∪ {2n+ 1 : n ∈ N+} = {2, 3, 4, . . . }.

• {2n : n ∈ N+} ∪ {2n− 1 : n ∈ N+} = {1, 2, 3, 4, . . . } = N+.

• A ∪ ∅ = A for every set A.

Definition 1.4. Given two sets A and B, we define

A ∩B = {x : x ∈ A and x ∈ B}

and call this set the intersection of A and B.
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Here are a few examples (again we leave some proofs until later):

• {1, 2, 7} ∩ {4, 9} = ∅.

• {1, 2, 3} ∩ {2, 3, 5} = {2, 3}.

• {1, {2, 3}} ∩ {1, 2, 3} = {1}.

• {2n : n ∈ Z} ∩ {3n : n ∈ Z} = {6n : n ∈ Z}.

• {3n+ 1 : n ∈ N+} ∩ {3n+ 2 : n ∈ N+} = ∅.

• A ∩ ∅ = ∅ for every set A.

Definition 1.5. Given two sets A and B, we define

A\B = {x : x ∈ A and x /∈ B}

and call this set the (relative) complement of B (in A).

In many cases, we have B ⊆ A, but we occasionally us it generally. Here are a few examples:

• {5, 6, 7, 8, 9}\{5, 6, 8} = {7, 9}.

• {1, 2, 7}\{4, 9} = {1, 2, 7}.

• {1, 2, 3} ∩ {2, 3, 5} = {1}.

• {2n : n ∈ Z}\{4n : n ∈ Z} = {4n+ 2 : n ∈ Z}.

• A\∅ = A for every set A.

• A\A = ∅ for every set A.

Definition 1.6. Given a set A, we let P(A) be the set of all subsets of A, and we call P(A) the power set
of A.

For example, we have
P({1, 2}) = {∅, {1}, {2}, {1, 2}}

and
P({4, 5, 7}) = {∅, {4}, {5}, {7}, {4, 5}, {4, 7}, {5, 7}, {4, 5, 7}}

Definition 1.7. Given two sets A and B, we let A×B be the set of all ordered pairs (a, b) such that a ∈ A
and b ∈ B, and we call this set the Cartesian product of A and B.

For example, we have

{1, 2, 3} × {6, 8} = {(1, 6), (1, 8), (2, 6), (2, 8), (3, 6), (3, 8)}

and
N× N = {(0, 0), (0, 1), (1, 0), (2, 0), . . . , (4, 7), . . . }

Notice that elements of R× R correspond to points in the plane.
We can also generalize the concept of a Cartesian product to more than 2 sets. If we are given n sets

A1, A2, . . . , An, we let A1×A2×· · ·×An be the set of all n-tuples (a1, a2, . . . , an) such that ai ∈ Ai for each
i. For example, we have

{1, 2} × {3} × {4, 5} = {(1, 3, 4), (1, 3, 5), (2, 3, 4), (2, 3, 5)}
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In the special case when A1, A2, . . . , An are all the same set A, we use the notation An to denote the set
A× A× · · · × A (where we have n copies of A). Thus, An is the set of all finite sequences of elements of A
of length n. For example, {0, 1}n is the set of all finite sequences of 0’s and 1’s of length n. Notice that this
notation fits in with the notation Rn that we are used to in Calculus and Linear Algebra.

Definition 1.8. Given a set A, we let A∗ be the set of all finite sequences of elements of A of any length,
including the empty sequence (the unique sequence of length 0).

Thus, for example, the set {0, 1}∗ is the set of all finite sequences of 0’s and 1’s. If we use λ to denote
the empty sequence and write things like 010 in place of the more precise (0, 1, 0), then we have

{0, 1}∗ = {λ, 0, 1, 00, 01, 10, 11, 000, 001, . . . }

Notice that if A 6= ∅, then A∗ is an infinite set.

Definition 1.9. Given two finite sequences σ and τ , we let στ be the concatenation of σ and τ , i.e. if
σ = (a1, a2, . . . , am) and τ = (b1, b2, . . . , bn), then στ = (a1, a2, . . . , am, b1, b2, . . . , bn).

1.5 The Cardinality of Sets

We will spend a significant amount of time trying to count the number of elements in certain sets. For now,
we will study some simple properties that will become extremely useful later when employed in clever ways.

Definition 1.10. Given a set A, we let |A| be the number of elements of A, and we call |A| the cardinality
of A. If A is infinite, then we write |A| =∞.

Of course, if we list the elements of a set A, then it’s usually quite easy to determine |A|. For example,
we trivially have |{1,

√
2, 52 , 18}| = 4. However, it can be very hard to determine the cardinality of a set. For

example, consider the set
A = {(x, y) ∈ Z2 : x3 = y2 + 1}

Determining the elements of A is nontrivial. It’s easy to see that (1, 0) ∈ A, but it’s not clear whether there
are any other elements. Using some nontrivial number theory, it is possible to show that A = {(1, 0)}, and
hence |A| = 1.

We start with one of the most basic, yet important, rules about the cardinality of sets.

Definition 1.11. We say that two sets A and B are disjoint if A ∩B = ∅.

Fact 1.12 (Sum Rule). If A and B are finite disjoint sets, then |A ∪B| = |A|+ |B|.

We won’t give a formal proof of this fact, because it is so basic that it’s hard to know what to assume
(although if one goes through the trouble of axiomatizing math with something like set theory, then it’s
possible to give a formal proof by induction on |B|). At any rate, the key fact is that since A and B are
disjoint, they have no elements in common. Therefore, each element of A ∪ B is in exactly one of A or
B. Notice that the assumption that A and B are disjoint is essential. If A = {1, 2} and B = {2, 3}, then
|A| = 2 = |B|, but |A ∪B| = 3 because A ∪B = {1, 2, 3}.

Although the next result is again very intuitive, we show how to prove it using the Sum Rule.

Proposition 1.13 (Complement Rule). If A and B are finite sets and B ⊆ A, then |A\B| = |A| − |B|.

Proof. Notice that A\B and B are disjoint sets and that (A\B)∪B = A. Using the Sum Rule, we conclude
that |A\B|+ |B| = |A|. The result follows.

We can now easily generalize this to the case where B may not be a subset of A.
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Proposition 1.14 (General Complement Rule). If A and B are finite sets, then |A\B| = |A| − |A ∩B|.

Proof. We have A\B = A\(A ∩B). Since A ∩B ⊆ A, we can now apply the Complement Rule.

We can generalize the Sum Rule to the following.

Definition 1.15. A collection of sets A1, A2, . . . , An is pairwise disjoint if Ai ∩Aj = ∅ whenever i 6= j.

Fact 1.16 (General Sum Rule). If A1, A2, . . . , An are finite sets that are pairwise disjoint sets, then |A1 ∪
A2 ∪ · · · ∪An| = |A1|+ |A2|+ · · ·+ |An|.

Again, we won’t give a formal proof of this fact (although it it possible to do so from the Sum Rule by
induction on n). Notice that as above the pairwise disjoint assumption is key, and it’s not even enough to
assume that A1 ∩A2 ∩ · · · ∩An = ∅ (see the homework).

Proposition 1.17. If A and B are finite sets, we have |A ∪B| = |A|+ |B| − |A ∩B|.

Proof. Consider the three sets A\B, B\A, and A∩B. These three sets are pairwise disjoint, and their union
is A ∪B. Using the General Sum Rule, we conclude that

|A ∪B| = |A\B|+ |B\A|+ |A ∩B|

Now |A\B| = |A| − |A∩B| and |B\A| = |B| − |A∩B| by the General Complement Rule. Plugging these in,
we conclude that

|A ∪B| = |A| − |A ∩B|+ |B| − |A ∩B|+ |A ∩B|
and hence

|A ∪B| = |A|+ |B| − |A ∩B|

Proposition 1.18 (Product Rule). If A and B are finite sets, then |A×B| = |A| · |B|.

Proof. Let n = |A| and let m = |B|. List the elements of A so that A = {a1, a2, . . . , an}. Similarly, list the
elements of B so that B = {b1, b2, . . . , bm}. For each i, let

Ai = {(ai, bj) : 1 ≤ j ≤ m} = {(ai, b1), (ai, b2), . . . , (ai, bm)}

Thus, Ai is the subset of A×B consisting only of those pairs whose first element is ai. Notice that the sets
A1, A2, . . . , An are pairwise disjoint and that

A×B = A1 ∪A2 ∪ · · · ∪An

Furthermore, we have that |Ai| = m for all i. Using the General Sum Rule, we conclude that

|A×B| = |A1|+ |A2|+ · · ·+ |An|
= m+m+ · · ·+m

= n ·m
= |A| · |B|

The result follows.

Using induction (see below), one can prove the following generalization.

Proposition 1.19 (General Product Rule). If A1, A2, . . . , An are finite sets, then |A1 × A2 × · · · × An| =
|A1| · |A2| · · · |An|.

Corollary 1.20. If A is a finite set and n ∈ N+, then |An| = |A|n.

Corollary 1.21. For any n ∈ N+, we have that |{0, 1}n| = 2n, i.e. there are 2n many sequences of 0’s and
1’s of length n.
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1.6 Relations

Definition 1.22. Let A and B be sets. A (binary) relation between A and B is a subset R ⊆ A × B. If
A = B, then we call a subset of A×A a (binary) relation on A.

For example, let A = {1, 2, 3} and B = {6, 8} as above. Let

R = {(1, 6), (1, 8), (3, 8)}

We then have that R is a relation between A and B, although certainly not a very interesting one. However,
we’ll use it to illustrate a few facts. First, in a relation, it’s possible for an element of A to be related to
multiple elements of B, as in the case for 1 ∈ A in our example R. Also, it’s possible that an element of A
is related to no elements of B, as in the case of 2 ∈ A in our example R.

For a more interesting example, consider the binary relation on Z defined by R = {(a, b) ∈ Z2 : a < b}.
Notice that (4, 7) ∈ R and (5, 5) /∈ R.

By definition, relations are sets. However, it is typically cumbersome to use set notation to write things
like (1, 6) ∈ R. Instead, it usually makes much more sense to use infix notation and write 1R6. Moreover,
we can use better notation for the relation by using a symbol like ∼ instead of R. In this case, we would
write 1 ∼ 6 instead of (1, 6) ∈ ∼ or 2 6∼ 8 instead of (2, 8) /∈ ∼.

With this new notation, we give a few examples of binary relations on R:

• Given x, y ∈ R, we let x ∼ y if x2 + y2 = 1.

• Given x, y ∈ R, we let x ∼ y if x2 + y2 ≤ 1.

• Given x, y ∈ R, we let x ∼ y if x = sin y.

• Given x, y ∈ R, we let x ∼ y if y = sinx.

Again, notice from these examples that given x ∈ R, there many 0, 1, 2, or even infinitely many y ∈ R with
x ∼ y.

If we let A = {0, 1}∗ be the set of all finite sequences of 0’s and 1’s, then the following are binary relations
on A:

• Given σ, τ ∈ A, we let σ ∼ τ if σ and τ have the same number of 1’s.

• Given σ, τ ∈ A, we let σ ∼ τ if σ occurs as a consecutive subsequence of τ (for example, we have
010 ∼ 001101011 because 010 appears in positions 5-6-7 of 001101011).

For a final example, let A be the set consisting of the 50 states. Let R be the subset of A × A con-
sisting of those pairs of states whose second letter of their postal codes are equal. For example, we have
(Iowa,California) ∈ R and and (Iowa, Virginia) ∈ R because the postal codes of these sets are IA, CA, VA.
We also have (Minnesota, Tennessee) ∈ R because of the postal codes MN and TN. Now (Texas, Texas)
∈ R, but there is no a ∈ A with a 6= Texas such that (Texas, a) ∈ R because no other state has X as the
second letter of its postal code. Texas stands alone.

1.7 Equivalence Relations

Definition 1.23. An equivalence relation on a set A is a binary relation ∼ on A having the following three
properties:

• ∼ is reflexive: a ∼ a for all a ∈ A.

• ∼ is symmetric: Whenever a, b ∈ A satisfy a ∼ b, we have b ∼ a.
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• ∼ is transitive: Whenever a, b, c ∈ A satisfy a ∼ b and b ∼ c, we have a ∼ c.

Consider the binary relation ∼ on Z where a ∼ b means that a ≤ b. Notice that ∼ is reflexive because
a ≤ a for all a ∈ Z. Also, ∼ is transitive because if a ≤ b and b ≤ c, then a ≤ c. However, ∼ is not
symmetric because 3 ∼ 4 but 4 6∼ 3. Thus, although ∼ satisfies two out of the three requirements, it is not
an equivalence relation.

A simple example of an equivalence relation is where A = R and a ∼ b means that |a| = |b|. In this case,
it is straightforward to check that ∼ is an equivalence relation. We now move on to some more interesting
examples which we treat more carefully.

Example 1.24. Let A be the set of all n× n matrices with real entries. Let M ∼ N mean that there exists
an invertible n× n matrix P such that M = PNP−1. We then have that ∼ is an equivalence relation on A.

Proof. We need to check the three properties.

• Reflexive: Let M ∈ A. The n × n identity matrix I is invertible and satisfies I−1 = I, so we have
M = IMI−1. Therefore, ∼ is reflexive.

• Symmetric: Let M,N ∈ A with M ∼ N . Fix a n × n invertible matrix P with M = PNP−1.
Multiplying on the left by P−1 we get P−1M = NP−1, and now multiplying on the right by P we
conclude that P−1MP = N . We know from linear algebra that P−1 is also invertible and (P−1)−1 = P ,
so N = P−1M(P−1)−1 and hence N ∼M .

• Transitive: Let L,M,N ∈ A with L ∼ M and M ∼ N . Since L ∼ M , we may fix a n × n invertible
matrix P with L = PMP−1. Since M ∼ N , we may fix a n×n invertible matrix Q with M = QNQ−1.
We then have

L = PMP−1 = P (QNQ−1)P−1 = (PQ)N(Q−1P−1)

Now by linear algebra, we know that the product of two invertible matrices is invertible, so PQ is
invertible and furthermore we know that (PQ)−1 = Q−1P−1. Therefore, we have

L = (PQ)N(PQ)−1

so L ∼ N .

Putting it all together, we conclude that ∼ is an equivalence relation on A.

Example 1.25. Let A be the set Z× (Z\{0}), i.e. A is the set of all pairs (a, b) ∈ Z2 with b 6= 0. Define a
relation ∼ on A as follows. Given a, b, c, d ∈ Z with b, d 6= 0, we let (a, b) ∼ (c, d) mean ad = bc. We then
have that ∼ is an equivalence relation on A.

Proof. We check the three properties.

• Reflexive: Let a, b ∈ Z with b 6= 0. Since ab = ba, it follows that (a, b) ∼ (a, b).

• Symmetric: Let a, b, c, d ∈ Z with b, d 6= 0, and (a, b) ∼ (c, d). We then have that ad = bc. From this,
we conclude that cb = da so (c, d) ∼ (a, b).

• Transitive: Let a, b, c, d, e, f ∈ Z with b, d, f 6= 0 where (a, b) ∼ (c, d) and (c, d) ∼ (e, f). We then have
that ad = bc and cf = de. Multiplying the first equation by f we see that adf = bcf . Multiplying the
second equation by b gives bcf = bde. Therefore, we know that adf = bde. Now d 6= 0 by assumption,
so we may cancel it to conclude that af = be. It follows that (a, b) ∼ (e, f)

Therefore, ∼ is an equivalence relation on A.
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Let’s analyze the above situation more carefully. We have (1, 2) ∼ (2, 4), (1, 2) ∼ (4, 8), (1, 2) ∼ (−5,−10),
etc. If we think of (a, b) as representing the fraction a

b , then the relation (a, b) ∼ (c, d) is saying exactly that
the fractions a

b and c
d are equal. You may never have thought about equality of fractions as the result of

imposing an equivalence relation on pairs of integers, but that is exactly what it is. We will be more precise
about this below.

Definition 1.26. Let ∼ be an equivalence relation on a set A. Given a ∈ A, we let

a = {b ∈ A : a ∼ b}

The set a is called the equivalence class of a.

Some sources use the notation [a] instead of a. This notation helps emphasize that the equivalence class
of a is a subset of A rather than an element of A. However, it is cumbersome notation when we begin working
with equivalence classes. We will stick with our notation, although it might take a little time to get used to.
Notice that by the reflexive property of ∼, we have that a ∈ a for all a ∈ A.

For example, let’s return to where A is the set consisting of the 50 states and R is the subset of A × A
consisting of those pairs of states whose second letter of their postal codes are equal. It’s straightforward to
show that R is an equivalence relation on A. We have

Iowa = {California,Georgia, Iowa,Louisiana,Massachusetts,Pennsylvania,Virginia,Washington}

while
Minnesota = {Indiana,Minnesota,Tennessee}

and
Texas = {Texas}

Notice that each of these are sets, even in the case of Texas.
For another example, suppose we are working with A = Z × (Z\{0}) where (a, b) ∼ (c, d) means that

ad = bc. As discussed above, some elements of (1, 2) are (1, 2), (2, 4), (4, 8), (−5,−10), etc. So

(1, 2) = {(1, 2), (2, 4), (4, 8), (−5,−10), . . . }

Again, I want to emphasize that (a, b) is a subset of A.
The following proposition is hugely fundamental. It says that if two equivalence classes overlap, then

they must in fact be equal. In other words, if ∼ is an equivalence on A, then the equivalence classes partition
the set A into pieces.

Proposition 1.27. Let ∼ be an equivalence relation on a set A and let a, b ∈ A. If a ∩ b 6= ∅, then a = b.

Proof. Suppose that a ∩ b 6= ∅. Fix c ∈ a ∩ b. We then have a ∼ c and b ∼ c. By symmetry, we know that
c ∼ b, and using transitivity we get that a ∼ b. Using symmetry again, we conclude that b ∼ a.

We first show that a ⊆ b. Let x ∈ a. We then have that a ∼ x. Since b ∼ a, we can use transitivity to
conclude that b ∼ x, hence x ∈ b.

We next show that b ⊆ a. Let x ∈ b. We then have that b ∼ x. Since a ∼ b, we can use transitivity to
conclude that a ∼ x, hence x ∈ a.

Putting this together, we get that a = b.

With that proposition in hand, we are ready for the foundational theorem about equivalence relations.

Theorem 1.28. Let ∼ be an equivalence relation on a set A and let a, b ∈ A.

1. a ∼ b if and only if a = b.
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2. a 6∼ b if and only if a ∩ b = ∅.

Proof. We first prove 1. Suppose first that a ∼ b. We then have that b ∈ a. Now we know that b ∼ b because
∼ is reflexive, so b ∈ b. Thus, b ∈ a ∩ b, so a ∩ b 6= ∅. By the previous proposition, we conclude that a = b.

Suppose conversely that a = b. Since b ∼ b because ∼ is reflexive, we have that b ∈ b. Therefore, b ∈ a
and hence a ∼ b.

We now use everything we’ve shown to get 2 with little effort. Suppose that a 6∼ b. Since we just proved
1, it follows that a 6= b, so by the previous proposition we must have a ∩ b = ∅. Suppose conversely that
a ∩ b = ∅. We then have a 6= b (because a ∈ a so a 6= ∅), so a 6∼ b by part 1.

Therefore, given an equivalence relation ∼ on a set A, the equivalence classes partition A into pieces.
Working out the details in our postal code example, one can show that ∼ has 1 equivalence class of size 8
(namely Iowa, which is the same set as California and 6 others), 3 equivalence classes of size 4, 4 equivalence
classes of size 3, 7 equivalence classes of size 2, and 4 equivalence classes of size 1.

Let’s revisit the example of A = Z× (Z\{0}) where (a, b) ∼ (c, d) means ad = bc. The equivalence class
of (1, 2), namely the set (1, 2) is the set of all pairs of integers which are ways of representing the fraction
1
2 . In fact, this is how once can “construct” the rational numbers from the integers. We simply define the
rational numbers to be the set of equivalence classes of A under ∼. In other words, we let

a

b
= (a, b)

So when we write something like
1

2
=

4

8

we are simply saying that
(1, 2) = (4, 8)

which is true because (1, 2) ∼ (4, 8).

1.8 Functions

Intuitively, given two sets A and B, a function f : A → B is a input-output “mechanism” that produces a
unique output b ∈ B for any given input a ∈ A. Up through calculus, the vast majority of functions that
we encounter are given by simple formulas, so this “mechanism” was typically interpreted in an algorithmic
and computational sense. However, some functions such as f(x) = sinx, f(x) = lnx, or integral functions
like f(x) =

∫ x

a
g(t) dt (given a continuous function g(t) and a fixed a ∈ R) were defined in more interesting

ways where it was not at all obvious how to compute them. We are now in a position to define functions
as relations that satisfy a certain property. Thinking about functions from this more abstract point of view
eliminates the vague “mechanism” concept because they will simply be certain types of sets. With this
perspective, we’ll see that functions can be defined in any way that a set can be defined. This approach
both clarifies the concept of a function as well as providing us with some much needed flexibility in defining
functions in more interesting ways.

Definition 1.29. Let A and B be sets. A function from A to B is relation f between A and B such that
for each a ∈ A, there is a unique b ∈ B with (a, b) ∈ f .

For example, let A = {c, q, w, y} and let B = N = {0, 1, 2, 3, 4, . . . }. An example of a function from A to
B is the set

f = {(c, 71), (q, 4), (w, 9382), (y, 4)}.

Notice that in the definition of a function from A to B, we know that for every a ∈ A, there is a unique
b ∈ B such that (a, b) ∈ f . However, as this example shows, it may not be the case that for every b ∈ B,
there is a unique a ∈ A with (a, b) ∈ f . Be careful with the order of quantifiers!
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Thinking of functions as special types of relations, and in particular as special types of sets, is occasionally
helpful (see below), but is often awkward in practice. For example, writing (c, 71) ∈ f to mean that f sends
c to 71 gets annoying very quickly. Using infix notation like c f 71 is not much better. Thus, we introduce
some new notation matching up with our old experience with functions.

Notation 1.30. Let A and B be sets.

• Instead of writing “f is a function from A to B”, we typically use the shorthand notation “f : A→ B”.

• If f : A→ B and a ∈ A, we write f(a) to mean the unique b ∈ B such that (a, b) ∈ f .

Therefore, in the above example of f , we have

f(c) = 71

f(q) = 4

f(w) = 9382

f(y) = 4

Definition 1.31. Let f : A→ B be a function. We define the following.

• We call A the domain of f .

• We call B the codomain of f .

• We define range(f) = {b ∈ B : There exists a ∈ A with f(a) = b}.

Notice that given a function f : A→ B, we have range(f) ⊆ B, but it is possible that range(f) 6= B. For
example, in the above case, we have that the codomain of f is N, but range(f) = {4, 71, 9382}.

In general, given a function f : A → B, it may be very difficult to determine range(f) because we may
need to search through all a ∈ A. For example, fix n ∈ N+ and define f : N→ {0, 1, 2, . . . , n− 1} by letting
f(a) be the remainder when dividing a2 by n. This simple but strange looking function has many interesting
properties. Given a large number n, computing whether a given number in {0, 1, 2, . . . , n− 1} is an element
of range(f) is thought to be extremely hard. In fact, it is widely believed that there is no efficient algorithm
to compute this when n is the product of two primes, and this is the basis for some cryptosystems and
pseudo-random number generators.

One nice feature of our definition of a function is that we immediately obtain a nice definition for when two
functions f : A→ B and g : A→ B are equal because we have defined when two sets are equal. Unwrapping
this definition, we see that f = g exactly when f and g have the same elements, which is precisely the same
thing as saying that f(a) = g(a) for all a ∈ A. In particular, the manner in which we describe functions does
not matter so long as the functions behave the same on all inputs. For example, if we define f : R→ R and
g : R → R by letting f(x) = sin2 x + cos2 x and g(x) = 1, then we have that f = g. Just like sets (because
after all functions are sets!), the definitions do not matter as long as the elements are the same.

Definition 1.32. Suppose that f : A → B and g : B → C are functions. The composition of g and f ,
denoted g ◦ f , is the function g ◦ f : A→ C defined by (g ◦ f)(a) = g(f(a)) for all a ∈ A.

Instead of defining g ◦ f in function language, one can also define function composition directly in terms
of the sets f and g. Suppose that f : A→ B and g : B → C are functions. Define a new set

R = {(a, c) ∈ A× C : There exists b ∈ B with (a, b) ∈ f and (b, c) ∈ g}

Now R is a relation, and one can check that it is a function (using the assumption that f and g are both
functions). We define g ◦ f to be this set.
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Proposition 1.33. Let A,B,C,D be sets. Suppose that f : A→ B, that g : B → C, and that h : C → D are
functions. We then have that (h◦g)◦f = h◦ (g ◦f). Stated more simply, function composition is associative
whenever it is defined.

Proof. Let a ∈ A be arbitrary. We then have

((h ◦ g) ◦ f)(a) = (h ◦ g)(f(a))

= h(g(f(a)))

= h((g ◦ f)(a))

= (h ◦ (g ◦ f))(a)

Therefore ((h ◦ g) ◦ f)(a) = (h ◦ (g ◦ f))(a) for all a ∈ A. It follows that (h ◦ g) ◦ f = h ◦ (g ◦ f).

Notice that in general we have f ◦ g 6= g ◦ f even when both are defined! For example, if f : R → R is
f(x) = x+ 1 and g : R→ R is g(x) = x2, then

(f ◦ g)(x) = f(g(x)) = f(x2) = x2 + 1

while
(g ◦ f)(x) = g(f(x)) = g(x+ 1) = (x+ 1)2 = x2 + 2x+ 1

For example, we have (f ◦ g)(1) = 12 + 1 = 2 while (g ◦ f)(1) = 12 + 2 · 1 + 1 = 4. Since we have found one
example of an x with (f ◦ g)(x) 6= (f ◦ g)(x), we conclude that f ◦ g 6= g ◦ f . It does not matter that there
do exist some values of x with (f ◦ g)(x) = (f ◦ g)(x) (for example, this is true when x = 0). Remember
that two functions are equal precisely when they agree on all inputs, so to show that the two functions are
not equal it suffices to find just one value where they disagree.

Definition 1.34. Let A be a set. The function idA : A → A defined by idA(a) = a for all a ∈ A is called
the identity function on A.

The identity function does leave other functions alone when we compose with it. However, we have to
be careful that we compose with the identity function on the correct set and the correct side.

Proposition 1.35. For any function f : A→ B, we have f ◦ idA = f and idB ◦ f = f .

Proof. Let f : A→ B. For any a ∈ A, we have

(f ◦ idA)(a) = f(idA(a)) = f(a)

Since a ∈ A was arbitrary, it follows that f ◦ idA = f . For any b ∈ B, we have

(idB ◦ f)(a) = idB(f(a)) = f(a)

because f(a) is some element in B. Since b ∈ B was arbitrary, it follows that idB ◦ f = f .

Definition 1.36. Let f : A→ B be a function.

• We say that f is injective (or one-to-one) if whenever f(a1) = f(a2) we have a1 = a2.

• We say that f is surjective (or onto) if for all b ∈ B there exists a ∈ A such that f(a) = b. In other
words, f is surjective if range(f) = B.

• We say that f is bijective if both f is injective and surjective.
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An equivalent condition for f to be injective is obtained by simply taking the contrapositive, i.e. f : A→ B
is injective if and only if whenever a1 6= a2, we have f(a1) 6= f(a2). Stated in more colloquial language, f is
injective if every element of B is hit by at most one element of A via f . In this manner, f is surjective if
every element of B is hit by at least one element of a via f , and f is bijective if every element of B is hit by
exactly one element of a via f .

If we want to prove that a function f : A→ B is injective, it is usually better to use our official definition
than the contrapositive one with negations. Thus, we want to start by assuming that we are given arbitrary
a1, a2 ∈ A that satisfy f(a1) = f(a2), and using this assumption we want to prove that a1 = a2. The
reason why this approach is often preferable is because it is typically easier to work with and manipulate a
statement involving equality than it is to derive statements from a non-equality.

Example 1.37. We have the following examples:

• f : R→ R defined by f(x) = 2x is both injective and surjective, so is bijective.

• f : Z→ Z defined by f(n) = 2n is injective but not surjective.

• f : {0, 1}∗ → N defined by f(σ) = |σ| is surjective but not injective.

• f : {0, 1}∗ → Z defined by f(σ) = |σ| is neither surjective nor injective.

• f : R→ R defined by f(x) = sinx is neither injective nor surjective.

• f : N+ → N+ defined by letting f(n) be the number of positive divisors of n is surjective (not easy), but
it is not injective.

• f : Q → Z defined by f(a
b ) = a is not even a function because we would need both f( 1

2 ) = 1 and
f( 2

4 ) = 2, but this contradicts the definition of a function because 1
2 = 2

4 .

Proposition 1.38. Let A,B,C be sets and let f : A→ B and g : B → C be functions

1. If f and g are both injective, then g ◦ f is injective.

2. If f and g are both surjective, then g ◦ f is surjective.

3. If f and g are both bijective, then g ◦ f is bijective.

4. If g ◦ f is injective, then f is injective.

5. If g ◦ f is surjective, then g is surjective.

Proof. 1. Suppose that f and g are both injective. Let a1, a2 ∈ A be arbitrary with (g◦f)(a1) = (g◦)(a2).
By definition of composition, we then have g(f(a1)) = g(f(a2)). Using the fact that g is injective,
we conclude that f(a1) = f(a2). Now we use the fact that f is injective to conclude that a1 = a2.
Therefore, g ◦ f is injective.

2. Suppose that f and g are both surjective. Let c ∈ C be arbitrary. Since g is surjective, we can fix
b ∈ B with g(b) = c. Since f is surjective, we can fix a ∈ A with f(a) = b. We then have

(g ◦ f)(a) = g(f(a))

= g(b)

= c

Since c ∈ C was arbitrary, we conclude that g ◦ f is surjective.

3. This follows from combining 1 and 2.
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4. Suppose that g ◦ f is injective. Let a1, a2 ∈ A be arbitrary with f(a1) = f(a2). Applying g to both
sides, we then have that g(f(a1)) = g(f(a2)), so (g ◦ f)(a1) = (g ◦ f)(a2). Using the fact that g ◦ f is
injective, it follows that a1 = a2. Therefore, f is injective.

5. Suppose that g ◦ f is surjective. Let c ∈ C be arbitrary. Since g ◦ f is surjective, we can fix a ∈ A
with (g ◦ f)(a) = c. By definition of composition, we then have g(f(a)) = c. Since f(a) ∈ B, we have
succeeded in finding a b with g(b) = c (namely b = f(a)). Since c ∈ C was arbitrary, we conclude that
g is surjective.

1.9 Divisibility

Definition 1.39. Let a, b ∈ Z. We say that a divides b, and write a | b, if there exists m ∈ Z with b = am.

For example, we have 2 | 6 because 2 · 3 = 6 and 3 | −21 because 3 · (−7) = 21. On the other hand, we
have 2 - 5. To see this, we argue as follows.

• We have 2 · 0 = 0, 2 · 1 = 2, and 2 · 2 = 4.

• For any m ∈ Z with m > 2, we have m ≥ 3, so 2m ≥ 6.

• For any m ∈ Z with m < 0, we have 2m < 0.

Therefore, for every m ∈ Z, we have 2m 6= 5. It follows that 2 - 5. We will see less painful ways to prove
this later.

Notice that a | 0 for every a ∈ Z because a · 0 = 0 for all a ∈ Z. In particular, we have 0 | 0 because as
noted we have 0 · 0 = 0. Of course we also have 0 · 3 = 0 and in fact 0 ·m = 0 for all m ∈ Z, so every integer
serves as a “witness” that 0 | 0. Our definition says nothing about the m ∈ Z being unique.

Proposition 1.40. Let a, b, c ∈ Z. If a | b and b | c, then a | c.

Proof. Suppose that a, b, c ∈ Z are such that a | b and b | c. Since a | b, we may fix m ∈ Z with b = am.
Since b | c, we may fix n ∈ Z with c = bn. We then have

c = bn = (am)n = a(mn)

Since mn ∈ Z, it follows that a | c.

Proposition 1.41. Let a, b, c ∈ Z.

1. If a | b, then a | bk for all k ∈ Z.

2. If a | b and a | c, then a | (b+ c).

3. If a | b and a | c, then a | (bk + c`) for all k, ` ∈ Z.

Proof.

1. Suppose that a | b. Let k ∈ Z be arbitrary. Since a | b, we may fix m ∈ Z with b = am. We then have

bk = (am)k = a(mk)

Since mk ∈ Z, it follows that a | bk. Since k ∈ Z was arbitrary, the result follows.
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2. Suppose that a | b and a | c. Since a | b, we may fix m ∈ Z with b = am. Since a | c, we may fix n ∈ Z
with c = an. We then have

b+ c = am+ an = a(m+ n)

Since m+ n ∈ Z, it follows that a | b+ c.

3. This follows by combining 1 and 2 as follows. Suppose that a | b and a | c. Let m,n ∈ Z be arbitrary.
Since a | b, we conclude from part 1 that a | bm. Since a | c, we conclude from part 1 again that
a | cn. Using part 2, it follows that a | (bm + cn). Since m,n ∈ Z were arbitrary, the result follows.
Alternatively, you should try to prove this directly without using the first two parts.

Proposition 1.42. Suppose that a, b ∈ Z. If a | b and b 6= 0, then |a| ≤ |b|.

Proof. Suppose that a | b and b 6= 0. Fix d ∈ Z with ad = b. Since b 6= 0, we have d 6= 0. Thus, |d| ≥ 1, and
so

|b| = |ad| = |a| · |d| ≥ |a| · 1 = |a|
The result follows.

Corollary 1.43. Suppose that a, b ∈ Z. If a | b and b | a, then either a = b or a = −b.

Proof. Suppose first that a 6= 0 and b 6= 0. By the previous Proposition, we know that both |a| ≤ |b| and
|b| ≤ |a|. It follows that |a| = |b|, and hence either a = b or a = −b.

Suppose now that a = 0. As above, since a | b, we may fix m ∈ Z with b = am. We then have
b = am = 0m = 0 as well. Therefore, a = b.

Suppose fiinally that b = 0. Since b | a, we may fix m ∈ Z with a = bm. We then have a = bm = 0m = 0
as well. Therefore, a = b.

Definition 1.44. Let a ∈ Z.

• We say that a is even if 2 | a, i.e. if there exists m ∈ Z with a = 2m.

• We say that a is odd if there exists m ∈ Z with a = 2m+ 1.

Proposition 1.45. No integer is both even and odd.

Proof. Let a ∈ Z. Suppose that a is both even and odd. Since a is even, we may fix m ∈ Z with a = 2m.
Since a is odd, we may fix n ∈ Z with a = 2n + 1. We then have 2m = 2n + 1, so 2(m − n) = 1. Since
m− n ∈ Z, we conclude that 2 | 1, which contradicts Proposition 1.42. This contradiction implies that a is
not both even and odd. Since a ∈ Z was arbitrary, the result follows.

We prove the following “obvious” fact below in much more generality. For now, we will simply assume
it.

Proposition 1.46. Every integer is either even or odd.

Proposition 1.47. Let a ∈ Z. If a2 is even, then a is even.

Proof. We prove the contrapositive. That is, we show that whenever a is odd, then a2 is odd. Suppose that
a is odd. Fix m ∈ Z with a = 2m+ 1. We then have

a2 = (2m+ 1)2

= 4m2 + 4m+ 1

= 2(2m2 + 2m) + 1

so a2 is odd. We have shown that if a is odd, then a2 is odd. Therefore, if a2 is even, then a is even.
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Theorem 1.48.
√

2 is irrational.

Proof. Suppose for the sake of obtaining a contradiction that
√

2 is irrational. Fix a, b ∈ Z with

√
2 =

a

b

where a
b is in lowest terms, i.e. a and b have no common divisor (this seems obviously possible, but we will

formally justify it later). Squaring both sides, we then have

2 =
a2

b2

so
2b2 = a2

Since b2 ∈ Z, we conclude that 2 | a2. Using the previous Proposition, it follows that a is even. Fix m ∈ Z
with a = 2m. We then have

2b2 = (2m)2 = 4m2.

Dividing each side by 2, we conclude that
b2 = 2m2.

Since m2 ∈ Z, it follows that 2 | b2. Using the previous Proposition again, we conclude that b is even. We
have shown that both a and b are even, i.e. that both 2 | a and 2 | b. This is a contradiction because a and
b were assumed to have no common factors. Therefore,

√
2 is irrational.

Proposition 1.49. If a ∈ Z is odd, then a is the difference of two perfect squares, i.e. there exist b, c ∈ Z
with a = b2 − c2.

Proof. Let a ∈ Z be odd. Fix m ∈ Z with a = 2m+ 1. Let b = m+ 1 and c = m. Notice that b, c ∈ Z and
that

b2 − c2 = (m+ 1)2 −m2

= m2 + 2m+ 1−m2

= 2m+ 1

= a

Therefore, we shown the existence of b and c (namely b = m + 1 and c = m) for which a = b2 − c2. Since
a ∈ Z was an arbitrary odd number, we conclude that every odd integer is the difference of two perfect
squares.

2 Fundamental Proof Techniques

2.1 Induction

Suppose that we want to prove that a certain statement is true for all natural numbers. In other words, we
want to do the following:

• Prove that the statement is true for 0.

• Prove that the statement is true for 1.

• Prove that the statement is true for 2.
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• Prove that the statement is true for 3.

• . . . .

Of course, since there are infinitely many natural numbers, going through each one in turn does not work
because we will never handle them all this way. How can we get around this? Suppose that when we
examine the first few proofs above that they look the same except that we replace 0 by 1 everywhere, or 0 by
2 everywhere, etc. In this case, one is tempted to say that “the pattern continues” or something similar, but
that is not convincing because we can’t be sure that the pattern does not break down when we reach 5413.
However, one way to see that the “the pattern continues” and handle all of the infinitely many possibilities
at once is to take an arbitrary natural number n, and prove that the statement is true for k using only the
fact that n is a natural number (but not any particular natural number).

This method of taking an arbitrary n ∈ N and proving that the statement is true for n is that standard way
of proving a statement involving a “for all” quantifier. This technique also works to prove that a statement
is true for all real numbers or for all matrices, as long as we take an arbitrary such object. However, there is
a different method one can use to prove that every natural number has a certain property, and this one does
not carry over to other situations such as the real numbers. The key fact is that the natural numbers start
with 0 and proceed in discrete steps forward. Consider what would if we can prove each of the following:

• Prove that the statement is true for 0.

• Prove that if the statement is true for 0, then the statement is true for 1.

• Prove that if the statement is true for 1, then the statement is true for 2.

• Prove that if the statement is true for 2, then the statement is true for 3.

• . . . .

Suppose that we are successful in doing this. From the first line, we then know that the statement is true for
0. Since we now know that it’s true for 0, we can use the second line to conclude that the statement is true
for 1. Since we now know that it’s true for 1, we can use the second line to conclude that the statement is
true for 2. And so on. In the end, we are able to conclude that the statement is true for all natural numbers.

Let’s examine this situation more closely. On the fact of it, each line looks more complicated than the
corresponding lines for proving a theorem directly. However, the key fact is that from the second line onward,
we now have an additional assumption! Thus, instead of proving that the statement is true for 3 without any
help, we can now use the assumption that the statement is true for 2 in that argument. Extra assumptions
are always welcome because we have more that we can use in the actual argument.

Of course, as in our discussion at the beginning of this section, we can’t hope to prove each of these
infinitely many things one at a time. In an ideal world, the arguments from the second line onward all
look exactly the same with the exception of replacing the number involved. Thus, the idea is to prove the
following.

• Prove that the statement is true for 0.

• Prove that if the statement is true for n, then the statement is true for n+ 1.

Notice that for the second line, we would need to prove that it is true for an arbitrary n ∈ N, just like we
would have to in a direct argument. An argument using these method is called a proof by (mathematical)
induction, and it is an extremely useful and common technique in combinatorics. We now state this approach
formally in terms of sets, which allows us to bypass the vague notion of “statement” that we used above.

Fact 2.1 (Principle of Mathematical Induction on N). Let X ⊆ N. Suppose that the following are true:

• 0 ∈ X (the base case)
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• n+ 1 ∈ X whenever n ∈ X (the inductive step)

We then have that X = N.

Once again, here’s the intuitive argument for why induction is valid. By the first assumption, we know
that 0 ∈ X. Since 0 ∈ X, the second assumption tells us that 1 ∈ X. Since 1 ∈ X, the second assumption
again tells us that 2 ∈ X. By repeatedly applying the second assumption in this manner, each element of N
is eventually determined to be in X. Notice that a similar argument works if we start with a different base
case, i.e. if we start by proving that 3 ∈ X and then prove the inductive step, then it follows that n ∈ X for
all n ∈ N with n ≥ 3.

We now give many examples of proofs by induction.

Proposition 2.2. For any n ∈ N+, we have

1 + 2 + · · ·+ n =
n(n+ 1)

2

We give two proofs. The first is a clever argument that avoids induction, while the second is a typical
application of induction.

Proof 1. We first give a proof with induction. Let n ∈ N+ be arbitrary. Let S = 1 + 2 + · · · + (n− 1) + n.
We also have S = n+ (n− 1) + · · ·+ 2 + 1. Adding both of these we conclude that

2S = (n+ 1) + (n+ 1) + · · ·+ (n+ 1) + (n+ 1)

and hence
2S = n(n+ 1).

Dividing both sides by 2, we conclude that

S =
n(n+ 1)

2

so 1 + 2 + · · ·+ (n− 1) + n = n(n+1)
2 . Since n ∈ N+ was arbitrary, the result follows.

Proof 2. We now give a proof using induction.

• Base Case: For n = 1, the statement is true because 1·2
2 = 1.

• Inductive Step: Assume that the statement is true for some fixed n ∈ N+, i.e. suppose that n is a
number for which we know that

1 + 2 + · · ·+ n =
n(n+ 1)

2
.

We then have

1 + 2 + · · ·+ n+ (n+ 1) =
n(n+ 1)

2
+ (n+ 1) (by the inductive hypothesis)

=
n2 + n+ 2n+ 2

2

=
n2 + 3n+ 2

2

=
(n+ 1)(n+ 2)

2

=
(n+ 1)((n+ 1) + 1)

2
.

Thus, the statement is true for n+ 1.
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By induction, we conclude that

1 + 2 + · · ·+ n =
n(n+ 1)

2

for all n ∈ N+.

Theorem 2.3. For any n ∈ N+, we have

n∑
k=1

(2k − 1) = n2

i.e.
1 + 3 + 5 + 7 + · · ·+ (2n− 1) = n2

Proof. We give a proof by induction.

• Base Case: Suppose that n = 1. We have

1∑
k=1

(2k − 1) = 2 · 1− 1 = 1

so the left hand-side is 1. The right-hand side is 12 = 1. Thus, the statement is true when n = 1.

• Inductive Step: Assume that the statement is true for some fixed n ∈ N+, i.e. suppose that n is a
number for which we know that

n∑
k=1

(2k − 1) = n2.

Notice that 2(n+ 1)− 1 = 2n+ 2− 1 = 2n+ 1, hence

n+1∑
k=1

(2k − 1) = [

n∑
k=1

(2k − 1)] + [2(n+ 1)− 1]

= [

n∑
k=1

(2k − 1)] + (2n+ 1)

= n2 + (2n+ 1) (by induction)

= (n+ 1)2

Thus, the statement is true for n+ 1.

By induction, we conclude that
n∑

k=1

(2k − 1) = n2

for all n ∈ N+.

Proposition 2.4. For all n ∈ N, we have 3 | (4n − 1).

Proof. We give a proof by induction.

• Base Case: Suppose that n = 0. We have 40 − 1 = 1 − 1 = 0, hence 3 | (40 − 1) because 3 · 0 = 0.
Thus, the statement is true when n = 0.
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• Inductive Step: Assume that the statement is true for some fixed n ∈ N+, i.e. suppose that n is a
number for which we know that 3 | (4n − 1). Fix k ∈ Z with 3k = 4n − 1. We then have

4n+1 − 1 = 4 · 4n − 1

= 4 · (3k + 1)− 1

= 12k − 3

= 3 · (4k − 1)

Since 4k − 1 ∈ Z, we conclude that 3 | (4n+1 − 1). Thus, the statement is true for n+ 1.

By induction, we conclude that 3 | (4n − 1) for all n ∈ N.

Proposition 2.5. We have 2n+ 1 < n2 for all n ∈ N with n ≥ 3.

Proof. We give a proof by induction.

• Base Case: Suppose that n = 3. We have 2 · 3 + 1 = 7 and 32 = 9, so 2 · 3 + 1 < 32. Thus, the
statement is true when n = 3.

• Inductive Step: Assume that the statement is true for some fixed n ∈ N with n ≥ 3, i.e. suppose that
n ≥ 3 is a number for which we know that 2n+ 1 < n2. Since 2n+ 1 ≥ 2 · 3 + 1 = 7 > 2, we then have

2(n+ 1) + 1 = 2n+ 3

= (2n+ 1) + 2

= n2 + 2

< n2 + 2n+ 1

= (n+ 1)2

Thus, the statement is true for n+ 1.

By induction, we conclude that 2n+ 1 < n2 for all n ∈ N with n ≥ 3.

Proposition 2.6. We have n2 < 2n for all n ≥ 5.

Proof. We give a proof by induction.

• Base Case: Suppose that n = 5. We have 52 = 25 and 25 = 32, so 52 < 25. Thus, the statement is
true when n = 5.

• Inductive Step: Assume that the statement is true for some fixed n ∈ N with n ≥ 5, i.e. suppose that
n ≥ 5 is a number for which we know that n2 < 2n. Since n2 = n · n ≥ 3n = 2n+ n > 2n+ 1, we have
then have

(n+ 1)2 = n2 + 2n+ 1

< n2 + n2

= 2n2

< 2 · 2n

= 2n+1

Thus, the statement is true for n+ 1.

By induction, we conclude that n2 < 2n for all n ≥ 5.
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Theorem 2.7. For all x ∈ R with x ≥ −1 and all n ∈ N+, we hve (1 + x)n ≥ 1 + nx.

Proof. On the face of it, this looks a little different because it we are also quantifying over infinitely many
real numbers x. Since x is coming from R, we can’t induct on x. However, we can take an arbitrary x ∈ R
with x ≥ −1, and then induct on n for this particular x. We now carry out that argument.

Let x ∈ R with x ≥ −1. For this x, we show that (1 + x)n ≥ 1 + nx for all n ∈ N+ by induction.

• Base Case: Suppose that n = 1. We then have that (1 + x)1 = 1 + x = 1 + 1x, so certainly
(1 + x)1 ≥ 1 + 1x.

• Inductive Step: Assume that the statement is true for some fixed n ∈ N+, i.e. suppose that n is a
number for which we know that (1 + x)n ≥ 1 + nx. Since x ≥ −1, we have 1 + x ≥ 0, so we can
multiply both sides of this inequality by (1 + x) to conclude that

(1 + x)n · (1 + x) ≥ (1 + nx) · (1 + x)

We then have

(1 + x)n+1 = (1 + x)n · (1 + x)

≥ (1 + nx) · (1 + x) (from above)

= 1 + nx+ x+ nx2

= 1 + (n+ 1)x+ nx2

≥ 1 + (n+ 1)x. (since nx2 ≥ 0)

Hence, we have shown that (1 + x)n+1 ≥ 1 + (n+ 1)x, i.e. that the statement is true for n+ 1.

By induction, we conclude that (1 + x)n ≥ 1 + nx for all n ∈ N+. Since x ∈ R with x ≥ −1 was arbitrary,
the statement follows.

Proposition 2.8. For all n ∈ N+, we have

n∑
k=1

1

k2
≤ 2− 1

n
.

Proof. We prove the statement by induction.

• Base Case: Suppose that n = 1. In this case, we have

1∑
k=1

1

k2
=

1

12
= 1

and

2− 1

1
= 2− 1 = 1

hence
1∑

k=1

1

k2
≤ 2− 1

1

• Inductive Step: Assume that the statement is true for some fixed n ∈ N+, i.e. suppose that n is a
number for which we know that

n∑
k=1

1

k2
≤ 2− 1

n
.
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We then have

n+1∑
k=1

1

k2
=

(
n∑

k=1

1

k2

)
+

1

(n+ 1)2

≤ 2− 1

n
+

1

(n+ 1)2

= 2−
(

1

n
− 1

(n+ 1)2

)
= 2− (n+ 1)2 − n

n(n+ 1)2

= 2− n2 + n+ 1

n(n+ 1)2

≤ 2− n2 + n

n(n+ 1)2

= 2− n(n+ 1)

n(n+ 1)2

= 2− 1

n+ 1
.

Thus, the statement is true for n+ 1.

By induction, we conclude we conclude that

n∑
k=1

1

k2
≤ 2− 1

n

for all n ∈ N+.

Theorem 2.9. Let a, b ∈ N with b 6= 0. There exist unique q, r ∈ N such that a = qb + r and 0 ≤ r < b.
Uniqueness here means that if a = q1b+ r1 with 0 ≤ r1 < b and a = q2b+ r2 with 0 ≤ r2 < b, then q1 = q2
and r1 = r2.

Proof. We first prove existence. Since we want to prove something for all a, b ∈ N, it might at first seem
unclear how to apply induction to both a and b. The answer in this case is not to induct on both, but to
fix b and induct on a. In other words, let b ∈ N with b > 0 be arbitrary, and for this fixed b, we prove the
existence of q, r for all a ∈ N by induction on a. That is, for this fixed b, we define

X = {a ∈ N : There exist q, r ∈ N with a = qb+ r}

and show that X = N by induction.

• Base Case: Suppose that a = 0. We then have a = 0 · b + 0 and since 0 < b, we may take q = 0 and
r = 0.

• Inductive Step: Assume that the statement is true for some fixed a ∈ N. Fix q, r ∈ Z with 0 ≤ r < b
such that a = qb + r. We then have a + 1 = qb + (r + 1). Since r, b ∈ N with r < b, we know that
r + 1 ≤ b. If r + 1 < b, then we are done. Otherwise, we have r + 1 = b, hence

a+ 1 = qb+ (r + 1)

= qb+ b

= (q + 1)b

= (q + 1)b+ 0
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and so we may take q + 1 and 0. Thus, the statement is true for a+ 1.

Therefore, the existence part of the theorem follows by induction.
We now prove uniqueness. Let a, b ∈ N with b 6= 0. Suppose that q1, q2, r1, r2 ∈ N are such that

q1b+ r1 = a = q2b+ r2

and both 0 ≤ r1 < b and 0 ≤ r2 < b. We then have

b(q2 − q1) = r1 − r2

hence b | (r2 − r1). Now −b < −r1 ≤ 0, so adding this to 0 ≤ r2 < b, we conclude that

−b < r2 − r1 < b

and therefore
|r2 − r1| < b

Now if r2 − r1 6= 0, then since b | (r2 − r1), we would conclude from Proposition 1.42 that |b| ≤ |r2 − r1|, a
contradiction. It follows that r2 − r1 = 0, and hence r1 = r2. Since

q1b+ r1 = q2b+ r2

and r1 = r2, we conclude that q1b = q2b. Now b 6= 0, so it follows that q1 = q2.

Proposition 2.10. Let a, b ∈ N with b 6= 0. Write a = qb + r for the unique choice of q, r ∈ N with
0 ≤ r < b. We then have that b | a if and only if r = 0.

Proof. If r = 0, then a = qb + r = bq, so b | a. Suppose conversely that b | a and fix m ∈ Z with a = bm.
Notice that since a ≥ 0 and b ≥ 0, we must have that m ≥ 0. We then have that both a = mb + 0 and
a = qb+ r, so by the uniqueness part of the above theorem, we must have r = 0.

2.2 Strong Induction

Remember our original model for induction:

• Prove that the statement is true for 0.

• Prove that if the statement is true for 0, then the statement is true for 1.

• Prove that if the statement is true for 1, then the statement is true for 2.

• Prove that if the statement is true for 2, then the statement is true for 3.

• Prove that if the statement is true for 3, then the statement is true for 4.

• . . . .

In the previous section, we argued why this model was sound and gave many examples. However, upon
closer inspection, it appears that we can assume more. In the second line, when proving that the statement
is true for 1 we are allowed to assume that the statement is true for 0. Now in the third line, when proving
that the statement is true for 2, we only assume that it is true for 1. If we are knocking down the natural
numbers in order, then we’ve already proved that it’s true for 0, so why can’t we assume that as well? The
answer is that we can indeed assume it, and in general when working to prove that the statement is true for
a natural number n, we can assume that we know it is true for all smaller values. In other words, we do the
following:
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• Prove that the statement is true for 0.

• Prove that if the statement is true for 0, then the statement is true for 1.

• Prove that if the statement is true for 0 and 1, then the statement is true for 2.

• Prove that if the statement is true for 0, 1, and 2, then the statement is true for 3.

• Prove that if the statement is true for 0, 1, 2, and 3, then the statement is true for 4.

• . . . .

Suppose that we are successful in doing this. From the first line, we then know that the statement is true
for 0. Since we now know that it’s true for 0, we can use the second line to conclude that the statement is
true for 1. Since we now know that it’s true for both 0 and 1, we can use the second line to conclude that
the statement is true for 2. And so on. In the end, we are able to conclude that the statement is true for all
natural numbers.

As usual, we can’t hope to prove each of these infinitely many things one at a time. In an ideal world,
the arguments from the second line onward all look exactly the same with the exception of replacing the
number involved. Thus, the idea is to prove the following.

• Prove that the statement is true for 0.

• Prove that if the statement is true for each of 0, 1, 2, . . . , n, then the statement is true for n+ 1.

Alternatively, we can state this as follows:

• Prove that the statement is true for 0.

• Prove that if the statement is true for each of 0, 1, 2, . . . , n − 1, then the statement is true for n (for
n ≥ 1).

An argument using these method is called a proof by strong induction. As we will see in the examples below,
sometimes we need to modify this clean structure to include several base cases to get the argument going.
Rather than going through a theoretical discussion of how and why one would do this, it’s easier to illustrate
the technique by example.

Proposition 2.11. Define a sequence an recursively by letting a0 = 0, a1 = 1, and

an = 3an−1 − 2an−2

for n ≥ 2. Show that an = 2n − 1 for all n ∈ N.

Proof. We prove that an = 2n − 1 for all n ∈ N by strong induction.

• Base Case: We handle two bases where n = 0 and n = 1 because our inductive step will use the result
for two steps back. When n = 0, we have a0 = 0 and 20 − 1 = 1− 1 = 0, so a0 = 20 − 1. When n = 1,
we have a1 = 1 and 21 − 1 = 2− 1 = 1, so a1 = 21 − 1.

• Inductive Step: Let n ≥ 2 and assume that the statement is true for 0, 1, 2, . . . , n− 1, i.e. assume that
am = 2m − 1 for all m ∈ {0, 1, 2, . . . , n − 1}. We prove that the statement is true for n. Notice that
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since n ≥ 2, we have 0 ≤ n − 1 < n and 0 ≤ n − 2 < n, so we know that an−1 = 2n−1 − 1 and
an−2 = 2n−2 − 1. Now

an = 3an−1 − 2an−1 (by definition since n ≥ 2)

= 3 · (2n−1 − 1)− 2 · (2n−2 − 1) (by the inductive hypothesis)

= 3 · 2n−1 − 3− 2 · 2n−2 + 2

= 3 · 2n−1 − 2n−1 − 1

= (3− 1) · 2n−1 − 1

= 2 · 2n−1 − 1

= 2n − 1

Thus, an = 2n − 1 and so the statement is true for n.

Using strong induction, we conclude that an = 2n − 1 for all n ∈ N.

Proposition 2.12. If n ∈ N and n ≥ 12, then there exist k, ` ∈ N with n = 4k + 5`.

Proof. We give a proof by strong induction.

• Base Case: We first prove that the statement is true for n ∈ {12, 13, 14, 15} (we will see why we need
so many base cases below). We have

– 12 = 4 · 3 + 5 · 0
– 13 = 4 · 2 + 5 · 1
– 14 = 4 · 1 + 5 · 2
– 15 = 4 · 0 + 5 · 3

Thus, the statement is true for n ∈ {12, 13, 14, 15}.

• Inductive Step: Let n ≥ 16 and assume that the statement is true for 12, 13, 14, . . . , n − 1. We prove
that the statement is true for n. Since n ≥ 16, we have 12 ≤ n− 4 < n. Since 12 ≤ n− 4 < 4, we know
that there exists k, ` ∈ N with

n− 4 = 4k + 5`.

Adding 4 to both sides, we conclude that

n = 4k + 5`+ 4 = 4(k + 1) + 5`

Since k + 1, ` ∈ N, we conclude that the statement is true for n.

By (strong) induction, we conclude that for all n ∈ N with n ≥ 12, there exist k, ` ∈ N with n = 4k+ 5`.

Theorem 2.13. Let b ∈ N with b ≥ 2. For all n ∈ N+, there exists ai ∈ N with 0 ≤ ai < b such that

n = akb
k + ak−1b

k−1 + · · ·+ a1b+ a0

Proof. Let b ∈ N with b ≥ 2 be arbitrary. With this fixed b, we prove the result by strong induction on n.

• Base Case: Let n = 1. We may take k = 1 and a0 = 1 < b.
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• Inductive Step: Let n ≥ 2 and assume that the statement is true for 1, 2, . . . , n− 1. Fix q, r ∈ N with
n = qb+ r and 0 ≤ r < b. Notice that q < n because q ≥ n would imply that

n = qb+ r ≥ qb ≥ nb ≥ 2n > n

a contradiction. Therefore, since 0 ≤ q < n, we may use strong induction to conclude that we can fix
ai ∈ N with 0 ≤ ai < b such that

q = akb
k + ak−1b

k−1 + · · ·+ a1b+ a0.

We then have

n = qb+ r

= (akb
k + ak−1b

k−1 + · · ·+ a1b+ a0)b+ r

= akb
k+1 + ak−1b

k + · · ·+ a1b
2 + a0b+ r

Since 0 ≤ r < b, we have shown that the statement is true for n.

The result follows by induction.

Definition 2.14. Suppose that a, b ∈ Z. We say that d ∈ Z is a common divisor of a and b if both d | a and
d | b.

The common divisors of 120 and 84 are {±1,±2,±3,±4,±6,±12} (we will see a careful argument below).
The common divisors of 10 and 0 are {±1,±2,±5,±10}. Every element of Z is a common divisor of 0 and
0. The following little proposition is fundamental to this entire section.

Proposition 2.15. Suppose that a, b, q, r ∈ Z and a = qb+r (we need not have 0 ≤ r < |b|). For any d ∈ Z,
we have that d is a common divisor of a and b if and only if d is a common divisor of b and r, i.e.

{d ∈ Z : d is a common divisor of a and b} = {d ∈ Z : d is a common divisor of b and r}.

Proof. Suppose first that d is a common divisor of b and r. Since d | b, d | r, and a = qb + r = bq + r1, we
may use Proposition 1.41 to conclude that d | a.

Conversely, suppose that d is a common divisor of a and b. Since d | a, d | b, and r = a−qb = a1+ b(−q),
we may use Proposition 1.41 to conclude that d | r.

For example, suppose that we are trying to find the set of common divisors of 120 and 84 (we wrote them
above, but now want to justify it). We repeatedly do division to reduce the problem as follows:

120 = 1 · 84 + 36

84 = 2 · 36 + 12

36 = 3 · 12 + 0

The first line tells us that the set of common divisors of 120 and 84 equals the set of common divisors of
84 and 36. The next line tells us that the set of common divisors of 84 and 36 equals the set of common
divisors of 36 and 12. The last line tells us that the set of common divisors of 36 and 12 equals the set of
common divisors of 12 and 0. Now the set of common divisors of 12 and 0 is simply the set of divisors of 12
(because every number divides 0). Putting it all together, we conclude that the set of common divisors of
120 and 84 equals the set of divisors of 12.

Definition 2.16. Let a, b ∈ Z. We say that an element d ∈ Z is a greatest common divisor of a and b if:
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• d ≥ 0

• d is a common divisor of a and b.

• Whenever c ∈ Z is a common divisor of a and b, we have c | d.

Notice that we are not defining the greatest common divisor of a and b to be the largest divisor of a and
b. The primary reason we do not is because this description fails to capture the most fundamental property
(namely that of being divisible by all other divisors, not just larger than them). Furthermore, if we were
to take that definition, then 0 and 0 would fail to have a greatest common divisor because every integer is
a common divisor of 0 and 0. With this definition however, it is a straightforward matter to check that 0
satisfies the above three conditions.

Since we require more of a greatest common divisor than just picking the largest, we first need to check
that they do indeed exist. The proof is an inductive formulation of the above method of calculation.

Theorem 2.17. Every pair of integers a, b ∈ Z has a unique greatest common divisor.

We first sketch the idea of the proof in the case where a, b ∈ N. If b = 0, we are done because it is
simple to verify that a is a greatest common divisor of a and 0. Suppose then that b 6= 0. Fix q, r ∈ N with
a = qb+ r and 0 ≤ r < b. Now the idea is to assert inductively the existence of a greatest common divisor
of b and r because this pair is “smaller” than the pair a and b. The only issue is how to make this intuitive
idea of “smaller” precise. There are several ways to do this, but perhaps the most straightforward is to only
induct on b. Thus, our base case handles all pairs of form (a, 0). Next, we handle all pairs of the form (a, 1)
and in doing this we can use the fact the we know the result for all pairs of the form (a′, 0). Notice that
we can we even change the value of the first coordinate here which is why we used a′. Then, we handle all
pairs of the form (a, 2) and in doing this we can use the fact that we know the result for all pairs of the form
(a′, 0) and (a′, 1). We now begin the formal argument.

Proof. We begin by proving existence only in the special case where a, b ∈ N. We use (strong) induction on
b to prove the result. That is, we let

X = {b ∈ N : For all a ∈ N, there exists a greatest common divisor of a and b}

and prove that X = N by strong induction.

• Base Case: Suppose that b = 0. Let a ∈ N be arbitrary. We then have that the set of common divisors
of a and b equals the set of divisors of a (because every integer divides 0), so a satisfies the requirement
of a greatest common divisor of a and 0. Since a ∈ N was arbitrary, we showed that there exists a
greatest common divisor of a and 0 for every a ∈ N, hence 0 ∈ X.

• Inductive Step: Suppose then that b ∈ N+ and we know the result for all smaller natural numbers. In
other words, we are assuming that c ∈ X whenever 0 ≤ c < b. We prove that b ∈ X. Let a ∈ N be
arbitrary. From above, we may fix q, r ∈ Z with a = qb + r and 0 ≤ r < b. Since 0 ≤ r < b, we know
by strong induction that r ∈ X, hence b and r have a greatest common divisor d. By Proposition 2.15,
the set of common divisors of a and b equals the set of common divisors of b and r. It follows that
d is a greatest common divisor of a and b. Since a ∈ N was arbitrary, we showed that there exists a
greatest common divisor of a and b for every a ∈ N, hence b ∈ X.

Therefore, we have shown that X = N, which implies that whenever a, b ∈ N, there exists a greatest common
divisor of a and b.

To turn the argument into a proof for all a, b ∈ Z, we simply note the set of divisors of an element m ∈ Z
equals the set of divisors of −m. So, for example, if a < 0 but b ≥ 0 we can simply take a greatest common
divisor of −a and b (which exists since −a, b ∈ N) and note that it will also be a greatest common divisor of
a and b. A similar argument works if a ≥ 0 and b < 0, or if both a < 0 and b < 0.
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For uniqueness, suppose that c and d are both greatest common divisors of a and b. Since d is a greatest
common divisor and c is a common divisor, we know by the last condition that c | d. Similarly, since c is
a greatest common divisor and d is a common divisor, we know by the last condition that d | c. Therefore,
either c = d or c = −d. Using the first requirement that a greatest common divisor must be nonnegative,
we must have c = d.

Definition 2.18. Let a, b ∈ Z. We let gcd(a, b) be the unique greatest common divisor of a and b.

For example we have gcd(120, 84) = 12 and gcd(0, 0) = 0. The following corollary is immediate from
Proposition 2.15.

Corollary 2.19. Suppose that a, b, q, r ∈ Z and a = qb+ r. We have gcd(a, b) = gcd(b, r).

The method of using repeated division and this corollary to reduce the problem of calculating greatest
common divisors is known as the Euclidean Algorithm. We saw it in action of above with 120 and 84. Here
is another example where we are trying to compute gcd(525, 182). We have

525 = 2 · 182 + 161

182 = 1 · 161 + 21

161 = 7 · 21 + 14

21 = 1 · 14 + 7

14 = 2 · 7 + 0

Therefore, gcd(525, 182) = gcd(7, 0) = 7.

Theorem 2.20. For all a, b ∈ Z, there exist k, ` ∈ Z with gcd(a, b) = ka+ `b.

Proof. We begin by proving existence in the special case where a, b ∈ N. We use induction on b to prove the
result. That is, we let

X = {b ∈ N : For all a ∈ N, there exist k, ` ∈ Z with gcd(a, b) = ka+ `b}

and prove that X = N by strong induction.

• Base Case: Suppose that b = 0. Let a ∈ N be arbitrary. We then have that

gcd(a, b) = gcd(a, 0) = a

Since a = 1 · a + 0 · b, so we may let k = 1 and ` = 0. Since a ∈ N was arbitrary, we conclude that
0 ∈ X.

• Inductive Step: Suppose then that b ∈ N+ and we know the result for all smaller nonnegative values.
In other words, we are assuming that c ∈ X whenever 0 ≤ c < b. We prove that b ∈ X. Let a ∈ N be
arbitrary. From above, we may fix q, r ∈ Z with a = qb+ r and 0 ≤ r < b. We also know from above
that gcd(a, b) = gcd(b, r). Since 0 ≤ r < b, we know by strong induction that r ∈ X, hence there exist
k, ` ∈ Z with

gcd(b, r) = kb+ `r

Now r = a− qb, so

gcd(a, b) = gcd(b, r)

= kb+ `r

= kb+ `(a− qb)
= kb+ `a− qb`
= `a+ (k − q`)b

Since a ∈ N was arbitrary, we conclude that b ∈ X.
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Therefore, we have shown that X = N, which implies that whenever a, b ∈ N, there exists k, ` ∈ Z with
gcd(a, b) = ka+ `b.

Given a, b ∈ Z, we can explicitly calculate k, ` ∈ Z by “winding up” the work created from the Euclidean
Algorithm. For example, we saw above that gcd(525, 182) = 7 by calculating

525 = 2 · 182 + 161

182 = 1 · 161 + 21

161 = 7 · 21 + 14

21 = 1 · 14 + 7

14 = 2 · 7 + 0

We now use these steps in reverse to calculate:

7 = 1 · 7 + 0 · 0
= 1 · 7 + 0 · (14− 2 · 7)

= 0 · 14 + 1 · 7
= 0 · 14 + 1 · (21− 1 · 14)

= 1 · 21 + (−1) · 14

= 1 · 21 + (−1) · (161− 7 · 21)

= (−1) · 161 + 8 · 21

= (−1) · 161 + 8 · (182− 1 · 161)

= 8 · 182 + (−9) · 161

= 8 · 182 + (−9) · (525− 2 · 182)

= (−9) · 525 + 26 · 182

This wraps everything up perfectly, but it is easier to simply start at the fifth line.
We end this section with a useful result.

Definition 2.21. Two elements a, b ∈ Z are relatively prime if gcd(a, b) = 1.

Proposition 2.22. Let a, b, c ∈ Z. If a | bc and gcd(a, b) = 1, then a | c.

Proof. Since a | bc, we may fix m ∈ Z with bc = am. Since gcd(a, b) = 1, we may fix k, ` ∈ Z with ak+b` = 1.
Multiplying this last equation through by c we conclude that akc+ b`c = c, so

c = akc+ `(bc)

= akc+ na`

= a(kc+ n`)

It follows that a | c.

2.3 Using Functions to Count

The following fact is intuitively clear. If f : A → B is injective, then every element of B is hit by at most
one element of A, so the there must be at least as many elements in B as their are in A. The others can be
argued similarly. One can do a formal proof by induction on the cardinalities of A and B, but just as for
the Sum Rule we will avoid being so formal.
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Fact 2.23. Let A and B be finite sets and let f : A→ B be a function.

• If f is injective, then |A| ≤ |B|.

• If f is surjective, then |B| ≤ |A|.

• If f is bijective, then |A| = |B|.

The last of these is often very helpful when to trying to determine the cardinality of a set, and is sometimes
called the “Bijection Principle”. In fact, we’ve already used this type of argument informally. Recall on the
homework that if A is a set with |A| = n and D = {(a, a) : a ∈ A}, then we asserted that |D| = n. Formally,
one can argue this by showing that there is a bijection between A and D. Namely, define f : A → A2 by
letting f(a) = (a, a). We then have f is injective and range(f) = D, so we get a bijection f : A → D. It
follows that |A| = |D|, and hence |D| = n.

In general, if we have a set A and want to know |A|, then the idea is to build a set B and a bijection
f : A→ B where |B| is much easier to determine. The most fundamental example of this is the following:

Proposition 2.24. Given a set A with |A| = n, we have |P(A)| = |{0, 1}n|.

Proof. Let A = {a1, a2, . . . , an} where the ai are distinct. Define a function f : {0, 1}n → P(A) by letting
f(b1, b2, . . . , bn) = {ai : bi = 1}. In other words, given a finite sequence (b1, b2, . . . , bn) of 0’s and 1’s, we
send it to the subset of A obtained by including ai precisely when the ith element of the sequence is a 1.
Notice that if (b1, b2, . . . , bn) 6= (c1, c2, . . . , cn), then we can fix an i with bi 6= ci, and in this case we have
f(b1, b2, . . . , bn) 6= f(c1, c2, . . . , cn) because ai is one of the sets but not the other. Furthermore, given any
S ⊆ A, if we let (b1, b2, . . . , bn) ∈ {0, 1}n be defined by letting

bi =

{
1 if ai ∈ S
0 if ai /∈ S

then f(b1, b2, . . . , bn) = S, so f is surjective. Therefore, f is a bijection, and hence |{0, 1}n| = |P(A)|.

Corollary 2.25. If |A| = n ∈ N+, then |P(A)| = 2n.

Proof. This is immediate from the bijection principle and Corollary 1.20.

Since this result is so fundamental, we give another proof that uses both induction and the bijection
principle.

Proof 2 of Corollary 2.25. We prove the result by induction on n ∈ N+.

• Base Case: Suppose that n = 1. Let A be a set with |A| = 1, say A = {a}. We then have that
P(A) = {∅, {a}}, so |P(A)| = 2 = 21.

• Induction Step: Assume that the statement is true for some fixed n ∈ N+, i.e. assume that for some
fixed n ∈ N+, we know that |P(A)| = 2n for all sets A with |A| = n. Consider an arbitrary set A with
|A| = n + 1. Fix some (any) element a0 ∈ A. Let S ⊆ P(A) be the collection of subsets of A not
having a0 as an element, and let T ⊆ P(A) be the collection of subsets of A having a0 as an element.
Notice then that S and T are disjoint sets with P(A) = S ∪ T , so by the Sum Rule we know that

|P(A)| = |S|+ |T |.

Now consider the function f : S → T defined by letting f(B) = B ∪ {a0}, i.e. given B ∈ S, we have
that B is a subset of A not having a0 as an element, and we send to the subset of A obtained by
throwing a0 in as a new element. Notice that f is a bijection, so |S| = |T |. Therefore, we have

|P(A)| = |S|+ |S|.
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Finally, notice that S = P(A\{a0}), so since |A\{a0}| = n, we can use induction to conclude that
|A\{a0}| = 2n. Therefore,

|P(A)| = 2n + 2n = 2 · 2n = 2n+1.

Thus, the statement is true for n+ 1.

By induction, we conclude that if |A| = n ∈ N+, then |P(A)| = 2n.

By the way, Corollary 2.25 is also true in the case n = 0. When n = 0, we have A = ∅ and P(∅) = {∅},
so |P(∅) = 1 = 20.

Proposition 2.26. Let A be a set with |A| = n ∈ N+ and let k ∈ N be such that 0 ≤ k ≤ n. The number of
subsets of A having cardinality k equals the number of subsets of A having cardinality n− k.

Proof. Let S be the collection of all subsets of A having cardinality k, and let T be the collection of all
subsets of A having cardinality n − k. Define f : S → T by letting f(B) = A\B, i.e. given B ⊆ A with
|B| = k, send it to the complement of B in A (notice that if |B| = k, then |A\B| = n−k by the complement
rule). Notice that f is a bijection (it is surjective because if C ⊆ A is such that |C| = n− k, then |A\C| = k
and f(A\C) = C). Therefore, |S| = |T |.

Thus, despite the fact that we do not (yet) have a formula for the number of subsets of a certain size, we
know that the number of subsets of size k must equal the number of subsets of size n− k even without this
knowledge.

2.4 The Pigeonhole Principle

We know that if A and B are finite sets and f : A→ B is an injective function, then |A| ≤ |B|. Taking the
contrapositive of this fact, we obtain the following.

Corollary 2.27 (Pigeonhole Principle). If A and B are finite sets with |A| > |B|, and f : A → B is a
function, then there exist a1, a2 ∈ A with a1 6= a2 such that f(a1) = f(a2). Informally, if n > k and we have
placed n balls into k boxes, then (at least) one box will contain at least 2 balls.

For a very simple example, in any group of 13 people, there must exist (at least) 2 people in the group
who were born in the same month.

Proposition 2.28. Given n+ 1 integers, it is always possible to find two whose difference is divisible by n.

Proof. Let A be a set of n+ 1 integers, so A = {a0, a1, . . . , an}. For each i, write

ai = nqi + ri

where 0 ≤ ri < n, so ri ∈ {0, 1, 2, . . . , n − 1}. Define f : A → {0, 1, 2, . . . , n − 1} by letting f(ai) = ri for
each i. Since |A| = n + 1 and |{0, 1, 2, . . . , n − 1}| = n, we know by the Pigeonhole Principle that f is not
injective. Fix i 6= j with ri = rj . We then have

ai − aj = (nqi + ri)− (nqj + rj)

= n(qi − qj) + (ri − rj)
= n(qi − qj) (since ri − rj = 0)

so n | (ai − aj).

Proposition 2.29. Let an = 777 · · · 7 where there are n many 7’s. There exists an n ≤ 2014 such that
2013 | an.
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Proof. For each n with 1 ≤ n ≤ 2014, write

ai = 2011qi + ri

where 0 ≤ ri < 2013. Since we have 2013 many possible distinct ri, it follows that there exists distinct i < j
with ri = rj . We then have

2013 | (aj − ai)
as above. The problem is that aj − ai does not equal any of the an. However

aj − ai = 777 · · · 700 · · · 0 = aj−i · 10i

since gcd(2013, 10i) = 1 (because the only prime divisors of 10i are 2 and 5, but these do not divide 2013),
we can use Proposition 2.22 to conclude that 2013 | aj−i.

Proposition 2.30. Suppose we have a gathering of n ≥ 2 people, and at the beginning of the gathering some
pairs of people shake hands. There always must exist (at least) two people who have shaken the same number
of hands.

Proof. Label the people with the numbers 1, 2, 3, . . . , n. We can then define a function f : {1, 2, 3, . . . , n} →
{0, 1, 2, . . . , n−1} by letting f(k) is the number of people that person k shook hands with. On the face of it,
this looks bad because both sets have n elements. However, it is impossible that both 0 and n−1 are elements
of range(f) because if somebody shook hands with all of the other n−1 people, then everybody shook hands
with a least one person, so 0 /∈ range(f). Thus, we can either view f as a function f : {1, 2, 3, . . . , n} →
{0, 1, 2, . . . , n− 2} or as a function f : {1, 2, 3, . . . , n} → {1, 2, . . . , n− 1}. In either case, f is not injective by
the Pigeonhole Principle, so there exist two people who have shaken the same number of hands.

Proposition 2.31. Let f : {0, 1}∗ → {0, 1}∗ be injective. For every n ∈ N+, there exists σ ∈ {0, 1}n with
|f(σ)| ≥ |σ| (here |τ | is the length of the finite sequence τ).

Proof. Let f : {0, 1}∗ → {0, 1}∗ be injective. Let n ∈ N+ be arbitrary. Suppose instead that |f(σ)| < |σ|
for all σ ∈ {0, 1}n. Notice that |{0, 1}|n = 2n and the number of sequences of length strictly less than n is
1 + 2 + 4 + · · ·+ 2n−1 because we can write it as the union {0, 1}0 ∪ {0, 1}1 ∪ {0, 1}2 ∪ · · · ∪ {0, 1}n−1 where
the sets are pairwise disjoint. Now the key fact is that

1 + 2 + 22 + · · ·+ 2n−1 = 2n − 1

which one can prove either by induction or by noting that

1 + 2 + 22 + · · ·+ 2n−1 = (1 + 2 + 22 + · · ·+ 2n−1) · 1
= (1 + 2 + 22 + · · ·+ 2n−1) · (2− 1)

= (2 + 22 + 23 + · · ·+ 2n)− (1 + 2 + 22 + · · ·+ 2n−1)

= 2n − 1.

Since |{0, 1}n| = 2n and the set of sequences of length strictly less than n is 2n−1, we may use the Pigeonhole
Principle to conclude that there exists distinct σ1, σ2 ∈ {0, 1}n with f(σ1) = f(σ2), which contradicts the
fact that f is injective. Therefore, there must exist σ ∈ {0, 1}n with |f(σ)| ≥ |σ|.

We can interpret the previous proposition as follows. Suppose that we have a compression algorithm,
i.e. a program that takes a sequence of 0’s and 1’s and tries to compress it down to a shorter sequence (think
of any standard zip program). If we look at how the function behaves on every input, we obtain a function
f : {0, 1}∗ → {0, 1}∗. Of course, for this compression algorithm to be at all useful, we would need to be able
to uncompress any file back to its original. In order to do this, the function f must be injective (otherwise, if
two files compress to the same thing, we would have no way to know which file to return). This proposition
says that any purported compression scheme must in fact fail to actually shrink the size of some file, and in
fact for every length n, there is a file of length n that is not actually made smaller.
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Proposition 2.32. Let n ∈ N+. Given a set S ⊆ {1, 2, 3, . . . , 2n} with |S| ≥ n + 1, there always exists a
pair of distinct elements a, b ∈ S with a | b.

Before proving this proposition, we examine some special cases in order to get some intuition. First,
consider the case when n = 5 so that 2n = 10. We want to prove that whenever we have at least 6 numbers
from the set {1, 2, 3, . . . , 10}, we can find two distinct numbers a and b such that a | b. The idea is to build
five “boxes” of numbers with the following properties:

• Every number from {1, 2, 3, . . . , 10} is in a box.

• Given any two distinct numbers from the same box, one divides the other.

Suppose that we are successful in doing this. Then given any set of at least six numbers, we can find two
of the numbers in the same box (because we only five boxes), and then we will be done. So let’s build five
boxes with the above properties in the case where n = 5:

• Box 1: {1, 2, 4, 8}

• Box 2: {3, 6}

• Box 3: {5, 10}

• Box 4: {7}

• Box 5: {9}

We now want to generalize this argument. The key idea behind the above boxes was as follows: Given a
natural number, keep dividing by 2 until we reach an odd number, and put two numbers in the same box if
we arrive at the same odd number. In order to formalize this, we prove the following lemma.

Lemma 2.33. Let n ∈ N+. There exist unique k, ` ∈ N such that ` is odd and n = 2k` .

Proof. We first prove the existence of k and ` by strong induction on n.

• When n = 1, we can write 1 = 20 · 1, so we can take k = 0 and ` = 1.

• Let n ∈ N with n ≥ 2, and assume that we know the existence part is true for all m with 1 ≤ m < n.
We prove it for n. First, notice that if n is odd, then we can simply write n = 20n, and we are done.
Suppose then that n is even. Fix m ∈ Z with n = 2m and notice that 1 ≤ m < n. By induction, we
can fix k, ` ∈ N such that ` is odd and m = 2k`. We then have n = 2m = 2k+1`, hence the result holds
for n.

The existence of k and ` for all n follows by induction.
We now prove uniqueness. Suppose that k1, k2, `1, `2 ∈ N are such that `1 and `2 are both odd and

2k1`1 = 2k2`2. If k1 < k2, then dividing both sides by 2k1 , we would be able to conclude that `1 = 2k2−k1`2,
which contradicts the fact that `1 is odd (since k2 − k1 ≥ 1). A similar contradiction occurs if k1 > k2.
Therefore, we must have that k1 = k2. Diving both sides by 2k1 = 2k2 , we then conclude that `1 = `2. This
gives uniqueness.

Proof of Proposition 2.32. S ⊆ {1, 2, 3, . . . , 2n} with |S| ≥ n + 1 be arbitrary. Let X be the set of all odd
integers ` with 1 ≤ ` ≤ 2n, and notice that |X| = n. Define a function f : S → X as follows. Given a ∈ S,
write a = 2k` for the unique k and ` from the previous lemma, and define f(a) = ` (notice that ` ≤ 2n
because a ≤ 2n). Intuitively, associate to each given n ∈ S the unique odd number obtained by repeatedly
dividing by 2 until we reach an odd number. Since |S| ≥ n + 1 and |X| = n, the Pigeonhole Principle tells
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us that we can find distinct a, b ∈ S with a < b such that f(a) = f(b). Call this unique value `, i.e. let
` = f(a) = f(b), and fix k1, k2 ∈ N with a = 2k1` and b = 2k2`. Since a < b, we have k1 < k2. Now

b = 2k2` = 2k2−k1 · 2k1 · ` = 2k2−k1 · a

so a | b. This completes the proof.

Suppose that we have a finite sequence of (possibly real) numbers. For example, consider the following
sequence of 10 numbers:

3 1 6 9 0 2 8 5 7 4

Although these numbers are not sorted in any sense, one can find a decently long decreasing subsequence
by pulling out the 9, 8, 7, 4. It turns out that no matter what sequence of length n one looks at, it always
possible to pull out an increasing or decreasing subsequence of length about

√
n.

Definition 2.34. Suppose that a1, a2, . . . , an is a finite sequence of real numbers. Suppose that we have
a sequence of indices with 1 ≤ i1 < i2 < · · · < ik ≤ n. We then call ai1 , ai2 , . . . , aik a subsequence of
a1, a2, . . . , an.

Definition 2.35. Suppose that a1, a2, . . . , an is a finite sequence of real numbers.

• We call the sequence increasing if a1 ≤ a2 ≤ · · · ≤ an.

• We call the sequence decreasing if a1 ≥ a2 ≥ · · · ≥ an.

• We call the sequence monotonic if it is either increasing or decreasing.

For example, suppose that a1, a2, . . . , a10 is our original sequence

3 1 6 9 0 2 8 5 7 4

Notice that 9, 8, 7, 4 is a decreasing subsequence of this sequence (with i1 = 4, i2 = 7, i3 = 9, and i4 = 10).

Theorem 2.36. Let n ∈ N+. Given a sequence of (n− 1)2 + 1 real numbers, it is always possible to find a
monotonic subsequence of length n.

Proof. Consider an arbitrary sequence

a1, a2, a3, . . . , a(n−1)2+1

of (n−1)2 + 1 many real numbers. Associate to each i the pair (k, `) ∈ N+×N+ where k is the length of the
longest increasing subsequence ending with (and including) ai and ` is the length of the longest decreasing
subsequence ending with (and including) ai. If any one of these pairs has a coordinate that is at least n,
then we are done. Otherwise, every pair (k, `) is such that 1 ≤ k ≤ n− 1 and 1 ≤ ` ≤ n− 1. There are only
(n − 1)2 many possible pairs, so since we have (n − 1)2 + 1 many numbers some pair must be repeated by
the Pigeonhole Principle. Fix i < j with (ki, `i) = (kj , `j). Now if aj ≥ ai, then we can add aj onto the end
of the longest increasing subsequence ending in ai to form an increasing subsequence of length ki + 1 > kj , a
contradiction. Similarly, if aj ≤ ai, then we can add aj onto the end of the longest decreasing subsequence
ending in ai to form an idecreasing subsequence of length `i + 1 > `j , a contradiction.

For example, for our sequence

3 1 6 9 0 2 8 5 7 4

we would assign the values

(1, 1) (1, 2) (2, 1) (3, 1) (1, 3) (2, 2) (3, 2) (3, 3) (4, 3) (3, 4)

Thus, we either take either 0, 2, 5, 7 as an increasing subsequence or 9, 8, 7, 4 as a decreasing subsequence.
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3 Counting

3.1 Arrangements, Permutations, and Combinations

Let A be a finite set with |A| = n. Given k ∈ N+, the set Ak is the set of all finite sequences of length n
whose elements are all from A. Occasionally, especially in computer science, such a finite sequence is called
a string over A of length k. We already know that |Ak| = |A|k = nk, so we can count the number of finite
sequences of length k. For example, if A = {a, b, c, d}, then there are exactly 42 = 16 many two letter strings
over A. There are exactly 1282 = 16, 384 many two character long ASCII sequences, and there are 107 many
potential phone numbers.

Notice that in a finite sequences, we might have repetition. For example, if A = {1, 2, 3}, then (1, 1, 3) ∈
A3 and (3, 1, 2, 3) ∈ A4. Suppose that A is a set with |A| = n, and we want to count the number of sequences
of length 2 where there is no repetition, i.e. we want to determine the cardinality of the set

B = {(a, b) ∈ A2 : a 6= b}

There are (at least) two straightforward ways to do this.

• Method 1: As on the first homework, we use the complement rule. Let D = {(a, a) : a ∈ A} and notice
that |D| = n because |A| = n. Since B = A2\D, it follows that |B| = |A2| − |D| = n2 − n = n(n− 1).

• Method 2: We use a modified version of the product rule as follows. Think about constructed an
element of B in two stages. First, we need to pick the first coordinate of our pair, and we have n
choices here. Now once we fix the first coordinate of our pair, we have n − 1 choices for the second
coordinate because we can choose any element of A other than the one that we chose in the first round.
By making these two choices in succession, we determine an element of B, and furthermore, every
element of B is obtained via a unique sequence of such choices. Therefore, we have |B| = n(n− 1).

Notice that in the argument for Method 2 above, we are not directly using the Product Rule. The issue is
that we can not write B in the form B = X×Y where |X| = n and |Y | = n−1 because the choice of second
coordinates depends upon the choice of first component. For example, if A = {1, 2, 3}, then if we choose 1
as our first coordinate, then we can choose any element of {2, 3} for the second, while if we choose 3 as our
first coordinate, then we can choose any element of {1, 2} for the second. However, the key fact is that the
number of choices for the second coordinate is the same no matter what we choose for the first.

Suppose more generally that we are building a set of objects in stages, in such a way that a sequence
of choices throughout the stages determines a unique object, and no two distinct sequences determine the
same object. Suppose also that we have the following number of choices at each stage:

• There are n1 many choices at the first stage.

• For each choice in the first stage, there are n2 many objects to pair with it in the second stage.

• For each pair of choices in the first two stages, there are n3 many choices to append at the third stage.

• . . .

• For each sequence of choices in the first k − 1 stages, there are nk many choices to append at the kth

stage.

In this situation, there are n1n2n3 · · ·nk many total objects in the set. The argument is similar to the
argument for the Product Rule, and again we will omit a formal proof.

With this new rule in hand, we can count a new type of object.

Definition 3.1. Let A be a finite set with |A| = n. A permutation of A is an element of An without repeated
elements, i.e. it’s a linear ordering of all n elements of A without repetition.
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For example, consider A = {1, 2, 3}. One example of permutation of A is (3, 1, 2). The set of all
permutations of A is:

{(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)}

Thus, there are 6 permutations of the set {1, 2, 3}. In order to count the number of permutations of a set
with n element, we use our new technique.

Proposition 3.2. If A is a finite set with n ∈ N+ elements, then there are n! many permutations of A.

Proof. We can build a permutation of A through a sequence of choices.

• We being by choosing the first element, and we have n choices.

• Once we’ve chosen the first element, we have n− 1 choices for the second because we can choose any
element of A other than the one chosen in the first stage.

• Next, we have n− 2 many choices for the third element.

• . . .

• At stage n− 1, we have chosen n− 2 distinct elements so far, so we have 2 choices here.

• Finally, we have only choice remaining for the last position.

Since every such sequence of choices determines a permutation of A, and distinct choices given distinct
permutations, it follows that there are n(n− 1)(n− 2) · · · 2 · 1 = n! many permutations of A.

Alternatively, we can give a recursive description of the number of permutations of a set with n-elements,
and use that to derive the above result. Define f : N+ → N+ by letting f(n) be the number of permutations
of {1, 2, . . . , n}. Notice that f(1) = 1. Suppose that we know the value of f(n). We show how to build all
permutations of {1, 2, . . . , n+ 1} from the f(n) many permutations of {1, 2, . . . , n} along with an element of
the set {1, 2, . . . , n, n+1}. Given a permutation of {1, 2, . . . , n} together with a number k with 1 ≤ k ≤ n+1,
we form a permutation of {1, 2, . . . , n, n+ 1} by taking our permutation of {1, 2, . . . , n}, and inserting n+ 1
into the sequence in position k (and then shifting all later numbers to the right). For example, if n = 4 and
we have the permutation (4, 1, 3, 2), and we have k = 2, then we insert 5 into the second position to form
the permutation (4, 5, 1, 3, 2).

In this way, we form all permutations of {1, 2, . . . , n, n+ 1} in a unique way. More formally, if we let Rn

is the set of all permutation {1, 2, . . . , n}, then this rule provides a bijection from Rn × {1, 2, . . . , n, n + 1}
to Rn+1. Therefore, we have f(n + 1) = (n + 1) · f(n) for all n ∈ N+. Combining this with the fact that
f(1) = 1, we conclude that f(n) = n! for all n ∈ N+.

Definition 3.3. Let A be a finite set with |A| = n, and let k ∈ N with 1 ≤ k ≤ n. A partial permutation of
A of length k is an element of Ak with no repeated element. A partial permutation of length k is also called
a k-permutation of A.

Proposition 3.4. If A is a finite set with n ∈ N+ elements and k ∈ N+ is such that 1 ≤ k ≤ n, then there
are

n(n− 1)(n− 2) · · · (n− k + 1) =
n!

(n− k)!

many k-permutations of A.
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Proof. The proof is the same as for permutations, except we stop after k stages. Notice that the last term
in the product, corresponding to the number of choices at stage k, is n− (k−1) = n−k+ 1 because at stage
k we have chosen the first k − 1 many element. Finally, notice that

n!

(n− k)!
=
n(n− 1)(n− 2) · (n− k + 1)(n− k)(n− k − 1) · · · 1

(n− k)(n− k − 1) · · · 1
= n(n− 1)(n− 2) · · · (n− k + 1)

giving the last equality.

For example, using the standard 26-letter alphabet, there are 26 ·25 ·24 = 26!
23! = 15, 600 many three-letter

strings of letters having no repetition.

Notation 3.5. If k, n ∈ N+ with 1 ≤ k ≤ n, we use the notation (n)k or P (n, k) for the number of
k-permutations of a set with n elements, i.e. we define

(n)k = P (n, k) =
n!

(n− k)!

Suppose that A and B are finite sets and |A| = m and |B| = n.

• We claim that number of functions f with domain A and codomain B equals nm. To see this, list the
elements of A in some order as a1, a2, . . . , am. A function assigns a unique value in B to each ai, so we
go through that ai in order. For a1, we have n possible images because we can choose any element of
B. Once we’ve chosen this, we now have n possible images for a2. As we go along, we always have n
possible images for each of the ai. Therefore, the number of functions from A to B is n · n · · ·n = nm.

• Notice that if n < m, then there are no injective functions f : A → B by the Pigeonhole Principle.
Suppose instead that n ≤ m. We claim that the number of injective functions f with domain A and
codomain B equals P (n,m) = n!

(n−m)! . The argument is similar to the one for general functions, but

we get fewer choices as we progress through A. As above, list the elements of A in some order as
a1, a2, . . . , am. A function assigns a unique value in B to each ai, so we go through that ai in order.
For a1, we have n possible images because we can choose any element of B. Once we’ve chosen this,
we now have n− 1 possible images for a2 because we can choose any value of B other than the one we
sent a1 to. Then we have n− 2 many choices for a3, etc. Once we arrive at am, we have already used
up m − 1 many elements of B, so we have n − (m − 1) = n −m + 1 many choices for where to send
am. Therefore, the number of functions from A to B is

n · (n− 1) · (n− 2) · · · (n−m+ 1) =
n!

(n−m)!

which is P (n,m).

Suppose we ask the following question: Let A = {1, 2, 3, 4, 5, 6, 7}. How many element of A4 contain the
number 7 at least once? In other words, how many three digit numbers are there such that each digit is
between 1 and 7 (inclusive), and 7 occurs at least once? A natural guess is that the answer is 4 · 73 for the
follow reason:

• First, pick one of 4 positions to place the 7.

• Now we have three positions open. Going through them in order, we have 7 choices for what to put in
each of these three positions.
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This all looks great, but unfortunately, there is a problem. It is indeed true that such a sequence of four
choices does create one of the number we are looking for. If we choose the sequence 3, 1, 5, 1, then we obtain
the number 1571. However, the sequence of choices 2, 7, 3, 4 and the sequence of choices 1, 7, 3, 4 both produce
the same string, namely 7734.

The key idea is to count the complement. Instead of counting the number of elements of A4 that do
contain the number 7 at least once, we count the number of elements of A4 that do not contain the number
7 at all, and subtract this amount from the total number of elements in A4. Now since |A| = 7, we have
that |A4| = 74 because we have 7 choices for each of the 4 spots. To count the number of elements of A4

that do not contain a 7, we simply notice that we have 6 choices for each of the 4 spots, so there are 64 of
these. Therefore, by the Complement Rule, the number of elements of A4 that do contain the number 7 at
least once is 74 − 64.

We next move on to a fundamental question that will guide a lot of our later work. Let n ∈ N+. We
know that there are 2n many subsets of {1, 2, . . . , n}. However, what if we ask how many subsets there are
of a certain size? For instance, how many subsets are there of {1, 2, 3, 4, 5} having exactly 3 elements? The
intuitive idea is to make 3 choices: First, pick one of the 5 elements to go into our set. Next, put one of the
4 remaining elements to add to it. Finally, finish off the process by picking one of the 3 remaining elements.
For example, if we choose the number 1, 3, 5 then we get the set {1, 3, 5}. Thus, a natural guess is that there
are 5 · 4 · 3 many subsets with 3 elements. However, recall that a set has neither repetition nor order, so just
as in the previous example we count the same set multiple times. For example, picking the sequence 3, 5, 1
would also give the set {1, 3, 5}. In fact, we arrive at the set {1, 3, 5} in the following six ways:

1, 3, 5 1, 5, 3 3, 1, 5
3, 5, 1 5, 1, 3 5, 3, 1

At this point, we may be tempted to throw our hands in the air as we did above. However, there is one
crucial difference. In our previous example, some sequences of 4 numbers including a 7 were counted once
(like 1571), some were counted twice (like 7712), and others were counted three or four times. However, in
our current situation, every subset is counted exactly 6 times because given a set with 3 elements, we know
that there are 3! = 6 many permutations of that set (i.e. ways to arrange the elements of the set in order).
The fact that we count each element 6 times means that the total number of subsets of {1, 2, 3, 4, 5} having
exactly 3 elements equals 5·4·3

6 = 10. The general principle that we are applying is the following:

Proposition 3.6 (Quotient Rule). Suppose that A is a finite set with |A| = n. Suppose that ∼ is an
equivalence relation on A, and that every equivalence class has exactly k elements. In this case there are n

k
many equivalence classes.

Proof. Let ` be the number of equivalence classes. To obtain an element of A, we can first pick one of the `
equivalence classes, and then pick one of the k many elements from that class. Since the equivalence classes
partition A, it follows that this sequence of choices produces each element of A in a unique way. Thus,
n = k · ` by the Product Rule. It follows that ` = n

k .

Proposition 3.7. Let n, k ∈ N+ and with 1 ≤ k ≤ n. Suppose that A is a finite set with |A| = n. The
number of subsets of A having exactly k elements equals:

n(n− 1)(n− 2) · · · (n− k + 1)

k!
=

n!

k! · (n− k)!

Proof. We generalize the above argument. We know that the number of k-permutations of A equals

n(n− 1)(n− 2) · · · (n− k + 1) =
n!

(n− k)!
.
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Now a k-permutation of A picks k distinct elements of A, put also assigns an order to the elements. Now
every subset of A of size k is coded by exactly k! many such k-permutations because we can order the subset
in k! many ways. Therefore, by the Quotient Rule, the number of subsets of A having exactly k elements
equals

n(n− 1)(n− 2) · · · (n− k + 1)

k!
=

n!

k! · (n− k)!

Notice also that if k = 0, then there is one subset of any set having zero elements (namely ∅). Thus, by
defining 0! = 1, the above formula works in the case when k = 0 as well.

Definition 3.8. Let n, k ∈ N and with 0 ≤ k ≤ n. We define the notations
(
n
k

)
and C(n, k) by(

n

k

)
= C(n, k) =

n!

k! · (n− k)!

We call this the number of k-combinations of an n-element set, and pronounce
(
n
k

)
as “n choose k”.

For example, the number of 5-card poker hands from a standard 52-card deck is:(
52

5

)
=

52!

5! · 48!
= 2, 598, 960.

We now give a number of example of counting problems:

• Over the standard 26-letter alphabet, how many “words” of length 8 have exactly 5 consonants and 3
vowels? We build every such word in a unique way via a sequence of choices.

– First, we pick out a subset of 3 of the 8 positions to house the vowels, and we have
(
8
3

)
many

possibilities.

– Next, we pick 3 vowels in order allowing repetition to fill in these positions. Since we have 5
vowels, there are 53 many possibilities.

– Finally, we pick 5 consonants in order allowing repetition to fill in remaining 5 positions. Since
we have 21 consonants, there are 215 many possibilities.

Since every word is uniquely determined by this sequence of choices, the number of such words is(
8

3

)
· 53 · 216 = 56 · 53 · 215

• How many ways are there to seat n people around a circular table (so the only thing that matters is
the relative position of people with respect to each other)? To count this, we use the Quotient Rule.
We first consider each of the chairs as distinct. List the people in some order, and notice that we have
n choices for where to seat the first person, then n − 1 for where to seat the second, then n − 2 for
the third, and so forth. Thus, if the seats are distinct, then we have n! many ways to seat the people.
However, two such seating arrangements are equivalent if we can get one from the other via a rotation
of the seats. Since there are n possible rotations, each seating arrangement occurs n times in this
count, so the total number of such seatings is n!

n = (n− 1)!.

More formally, we can think about this as following. Consider all permutations of an n-element set (the
people): we know that there are n! of these. Now given two permutations, which are just sequences
of length n without repetition, we consider two of these sequences equivalent exactly when every pair
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of numbers is the same distance apart where we allow “wrap around” (since the seating is circular).
We then have that two such sequences are equivalent precisely when one is a cyclic shift of the other.
Thus, every equivalence class has exactly n elements, and hence there are n!

n = (n− 1)! many circular
arrangements.

• Suppose that we are in a city where all streets are straight and either east-west or north-south. Suppose
that we are at one corner, and want to travel to a corner that is m blocks east and n blocks north, but
we want to do it efficiently. More formally, we want to count the number of ways to get from the point
(0, 0) to the point (m,n) where at each stage we either increase the x-coordinate by 1 or we increase
the y-coordinate by 1. At first sight, it appears that we at each intersection, we have 2 choices: Either
go east or go north. However, this is not really the case, because if we can east m times, then we are
forced to go north the rest of the way. The idea for how to count this is that such a path is uniquely
determined by a sequence of m+ n many E’s and N ’s (representing east and north) having exactly m
many E’s. To determine such a sequence, we need only choose the positions of the m many E’s, and
there are (

m+ n

m

)
man choices. Of course, we could instead choose the positions of n many N ’s to count it as(

m+ n

n

)
which is the same number.

• How many anagrams (i.e. rearrangements of the letters) are there of MISSISSIPPI? Here is one ap-
proach. Notice that MISSISSIPPI has one M, four I’s, four S’s, and two P’s, for a total of eleven
letters. First pick the position of the M and notice that we have 11 choices. Once that is done, pick
the position of the four I’s and notice that this amount to picking a 4 element subset of the remaining
10 positions. There are

(
10
4

)
many such choices. Once that is done, pick the position of the four S’s

and notice that this amount to picking a 4 element subset of the remaining 6 positions. There are
(
6
4

)
many such choices. Once this is done, the position of the two P’s is fixed. This gives a total number
of anagrams equal to

11

(
10

4

)(
6

4

)
= 11 · 10!

4! · 6!
· 6!

4! · 2!
=

11!

4! · 4! · 2!
= 34, 650

Another argument is as follows. Think of distinguishing common letters with different colors. We then
have 11! many ways to rearrange the letters, but this number overcounts the numbers of anagrams.
Each actual anagram comes about in 4!·4!·2! many ways because we can permute the currently distinct
four I’s amongst each other in 4! ways, we can permute the currently distinct four S’s amongst each
other in 4! ways, and we can permute the the currently distinct two P’s amongst each other in 2! many
ways. Thus, since each actual anagram is counted 4! ·4! ·2! many times in the 11! count, it follows that
there are

11!

4! · 4! · 2!
= 34, 650

many anagrams of MISSISSIPPI.

As mentioned above, there are a total of (
52

5

)
= 2, 598, 960
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many (unordered) 5-card poker hands from a standard 52-card deck. Using this, we now count the number
of special hands of each type. We use the fact that each card has one of four suits (clubs, diamonds, hearts,
and spades) and one of thirteen ranks (2, 3, 4, 5, 6, 7, 8, 9,10, jack, queen, king, ace). We follow the common
practice of allowing the ace to be either a low card or a high card for a straight, but we do not allow “wrap
around” straights such as king, ace, 2, 3, 4.

• Straight Flush: There are
4 · 10 = 40

many of these because they are determined by a choice of suits and the rank of the lowest card (from
ace through 10). The probability is about .00154%.

• Four of a kind: There are
13 · 48 = 624

of these because we choose a rank (and take all four cards of that rank), and the choose one of the
remaining 48 cards. The probability is about .0256%.

• Full House: There are

13 ·
(

4

3

)
· 12 ·

(
4

2

)
= 3, 744

many, which can be seen by making the following sequence of choices:

– Choose one of the 13 ranks for the three of a kind.

– Choose 3 of the 3 suits for the three of a kind.

– Choose one of the 12 remaining ranks for the pair.

– Choose 2 of the 4 suits for the pair.

The probability is about .14406%.

• Flush: There are

4 ·
(

13

5

)
= 5, 148

many because we need to choose 1 of the 4 suits, and then 5 of the 13 ranks. However, 40 of these
are actually straight flushes, so we really have 5, 108 many flushes that are not stronger hands. The
probability is about .19654%

• Straight: There are
10 · 45 = 10, 240

many because we need to choose the rank of the lowest card, and the suits for the five cards in increasing
order of rank. However, we again have that 40 of these are straight flushes, so we really have 10, 200
many straights that are not stronger hands. The probability is about .39246%.

• Three of a kind: There are

13 ·
(

4

3

)
·
(

12

2

)
· 42 = 54, 912

many, which can be seen by making the following sequence of choices:

– Choose one of the 13 ranks for the three of a kind.

– Choose 3 of the 3 suits for the three of a kind.

42



– Choose two of the other ranks for the remaining two cards (they are different because we do not
want to include full houses).

– Choose the suit of the lower ranked card not in the three of a kind.

– Choose the suit of the higher ranked card not in the three of a kind.

(Alternatively, we can choose the last two cards in different ranks in 48 · 44 many ways, but then we
need to divide by 2 because the order of choosing these does not matter.) The probability is about
2.1128%.

• Two Pair: There are (
13

2

)
·
(

4

2

)2

· 44 = 123, 552

many, which can be seen by making the following sequence of choices:

– Choose the two ranks for the two pairs.

– Choose the two suits for the lower ranked pair.

– Choose the two suits for the higher ranked pair.

– Choose one of the 44 cards not in these two ranks.

The probability is about 4.7539%.

• One pair: There are

13 ·
(

4

2

)
·
(

12

3

)
· 43 = 1, 098, 240

many, which can be seen by making the following sequence of choices:

– Choose the rank for the pair.

– Choose the two suits for the pair.

– Choose three distinct ranks for the other three cards (which are not the same rank as the pair).

– Choose the suit of the lowest ranked card not in the pair.

– Choose the suit of the middle ranked card not in the pair.

– Choose the suit of the highest ranked card not in the pair.

The probability is about 42.257%.

3.2 The Binomial Theorem and Properties of Binomial Coefficients

Recall that if n, k ∈ N with k ≤ n, then we defined(
n

k

)
=

n!

k! · (n− k)!

Notice that when k = n = 0, then
(
n
k

)
= 1 because we define 0! = 1, and indeed there is a unique subset of

∅ having 0 elements, namely ∅. When n, k ∈ N with n < k, then we define(
n

k

)
= 0

because there are no subsets of an n-element set with cardinality k (notice that the above formula doesn’t
make sense because n− k < 0.
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Using Proposition 2.26, we know that whenever k, n ∈ N are such that k ≤ n, then(
n

k

)
=

(
n

n− k

)
because the function that takes the relative complement is a bijection between subsets of cardinality k and
subsets of cardinality n− k. Of course, one can prove this directly from the formulas because(

n

n− k

)
=

n!

(n− k)! · (n− (n− k))!

=
n!

(n− k)! · k!

=
n!

k! · (n− k)!

=

(
n

k

)
Although the algebraic manipulations here are easy, the bijective proof feels more satisfying because it
“explains” the formula. Proving that two numbers are equal by showing that the both count the numbers
of elements in one common set, or by proving that there is a bijection between a set counted by the first
number and a set counted by the second, is called either a combinatorial proof or a bijective proof.

Proposition 3.9. Let n, k ∈ N+ with 0 < k < n. We have(
n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
Proof. One extremely unenlightening proof is to expand out the formula on the right and do terrible algebraic
manipulations on it. If you haven’t done so, I encourage you to do it. However, we use the combinatorial
description of

(
n
k

)
to give a more meaningful combinatorial argument. Let n, k ∈ N with k ≤ n. Consider a

set A with n many elements. To determine
(
n
k

)
, we need to count the number of subsets of A of size k. We

do this as follows. Fix an arbitrary a ∈ A. Now an arbitrary subset of A of size k fits into exactly one of the
following types.

• The subset has a as an element. In this case, to completely determine the subset, we need to pick the
remaining k − 1 elements of the subset from A\{a}. Since A\{a} has n − 1 elements, the number of
ways to do this is

(
n−1
k−1
)
.

• The subset does not have a as an element. In this case, to completely determine the subset, we need
to pick all k elements of the subset from A\{a}. Since A\{a} has n− 1 elements, the number of ways
to do this is

(
n−1
k

)
.

Putting this together, we conclude that the number of subsets of A of size k equals
(
n−1
k−1
)

+
(
n−1
k

)
.

Using this proposition, together with the fact that(
n

0

)
= 1 and

(
n

n

)
= 1

for all n ∈ N, we can compute
(
n
k

)
recursively to obtain the following table. The rows are labeled by n and

the columns by k. To determine the number that belongs in a given square, we simply add the number
above it and the number above and to the left. This table is known as Pascal’s Triangle:
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(
n
k

)
0 1 2 3 4 5 6 7

0 1 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0
2 1 2 1 0 0 0 0 0
3 1 3 3 1 0 0 0 0
4 1 4 6 4 1 0 0 0
5 1 5 10 10 5 1 0 0
6 1 6 15 20 15 6 1 0
7 1 7 21 35 35 21 7 1

There are many curious properties of Pascal’s Triangle that we will discover in time. On of the first
things to note is that these numbers seem to appear in other places. For example, if x, y ∈ R, then we have:

• (x+ y)1 = x+ y

• (x+ y)2 = x2 + 2xy + y2

• (x+ y)3 = x3 + 3x2y + 3xy2 + y3

• (x+ y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4

Looking at these, it appears that the coefficients are exactly the corresponding elements of Pascal’s Triangle.
What is the connection here? Notice that if we do not use commutativity and do not collect like terms, we
have

(x+ y)2 = (x+ y)(x+ y)

= x(x+ y) + y(x+ y)

= xx+ xy + yx+ yy

and so

(x+ y)3 = (x+ y)(x+ y)2

= (x+ y)(xx+ xy + yx+ yy)

= x(xx+ xy + yx+ yy) + y(xx+ xy + yx+ yy)

= xxx+ xxy + xyx+ xyy + yxx+ yxy + yyx+ yyy.

In other words, it looks like when we fully expand (x + y)n, without using commutativity or collecting x’s
and y’s, that we are getting a sum of all sequences of x’s and y’s of length n. Thus, if we want to know
the coefficient of xn−kyk, then we need only ask how many such sequences have exactly k many y’s (or
equivalently exactly n − k many x’s), and the answer is

(
n
k

)
=
(

n
n−k
)

because we need only pick out the
position of the y’s (or the x’s). More formally, we can prove this by induction.

Theorem 3.10 (Binomial Theorem). Let x, y ∈ R and let n ∈ N+. We have

(x+ y)n =

(
n

0

)
xn +

(
n

1

)
xn−1y + · · ·+

(
n

n− 1

)
xyn−1 +

(
n

n

)
yn

=

n∑
k=0

(
n

k

)
xn−kyk

=

n∑
k=0

(
n

k

)
xkyn−k
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Proof. We prove the result by induction. When n = 1, we trivially have

(x+ y)1 = x+ y =

(
1

0

)
x+

(
1

1

)
y

Suppose then that we have an n ∈ N+ for which we know that the statement is true. We then have

(x+ y)n+1 = (x+ y)n · (x+ y)

=

((
n

0

)
xn +

(
n

1

)
xn−1y + · · ·+

(
n

n− 1

)
xyn−1 +

(
n

n

)
yn
)
· (x+ y)

=

((
n

0

)
xn +

(
n

1

)
xn−1y + · · ·+

(
n

n− 1

)
xyn−1 +

(
n

n

)
yn
)
· x((

n

0

)
xn +

(
n

1

)
xn−1y + · · ·+

(
n

n− 1

)
xyn−1 +

(
n

n

)
yn
)
· y

=

(
n

0

)
xn+1 +

(
n

1

)
xny +

(
n

2

)
xn−1y2 + · · ·+

(
n

n− 1

)
x2yn−1 +

(
n

n

)
xyn

+

(
n

0

)
xny +

(
n

1

)
xn−1y2 + · · ·+

(
n

n− 2

)
x2yn−1 +

(
n

n− 1

)
xyn +

(
n

n

)
yn+1

= xn+1 +

((
n

1

)
+

(
n

0

))
· xny +

((
n

2

)
+

(
n

1

))
· xn−1y2 + · · ·+

((
n

n

)
+

(
n

n− 1

))
· xyn + yn+1

=

(
n+ 1

0

)
xn+1 +

(
n+ 1

1

)
xny +

(
n+ 1

2

)
xn−1y2 + · · ·+

(
n+ 1

n

)
xyn +

(
n+ 1

n+ 1

)
yn+1

where we have used Proposition 3.9 to combine each of the sums to get the last line.

Corollary 3.11. For any n ∈ N+, we have(
n

0

)
+

(
n

1

)
+

(
n

2

)
+ · · ·+

(
n

n

)
= 2n

Proof 1. We use the Binomial Theorem in the special case where x = 1 and y = 1 to obtain

2n = (1 + 1)n

=

n∑
k=0

(
n

k

)
· 1n−k · 1k

=

n∑
k=0

(
n

k

)
=

(
n

0

)
+

(
n

1

)
+

(
n

2

)
+ · · ·+

(
n

n

)
.

This completes the proof.

Proof 2. Let n ∈ N+ be arbitrary. We give a combinatorial proof by arguing that both sides count the
number of subsets of an n-element set. Suppose then that A is a set with |A| = n. On the one hand, we
know that |P(A)| = 2n by Corollary 2.25.

We know argue that

|P(A)| =
(
n

0

)
+

(
n

1

)
+

(
n

2

)
+ · · ·+

(
n

n

)
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For each k ∈ N with 0 ≤ k ≤ n, let Pk(A) be the subset of P(A) consisting of those subsets of A having
exactly k elements. We then have that

P(A) = P0(A) ∪ P1(A) ∪ P2(A) ∪ · · · ∪ Pn(A)

and furthermore that the Pk(A) are pairwise disjoint (i.e. if k 6= `, then Pk(A) ∩ P`(A) = ∅). Therefore,

|P(A)| = |P0(A)|+ |P1(A)|+ |P2(A)|+ · · ·+ |Pn(A)|

Now for each k with 0 ≤ k ≤ n, we know that

|Pk(A)| =
(
n

k

)
so it follows that

|P(A)| =
(
n

0

)
+

(
n

1

)
+

(
n

2

)
+ · · ·+

(
n

n

)
.

Hence

2n =

(
n

0

)
+

(
n

1

)
+

(
n

2

)
+ · · ·+

(
n

n

)
.

because both sides count the number of elements of P(A).

Corollary 3.12. For any n ∈ N+, we have

n∑
k=0

(−1)k
(
n

k

)
=

(
n

0

)
−
(
n

1

)
+

(
n

2

)
− · · ·+ (−1)n

(
n

n

)
= 0

Thus (
n

0

)
+

(
n

2

)
+

(
n

4

)
+ · · · = 2n−1 =

(
n

1

)
+

(
n

3

)
+

(
n

5

)
+ . . .

Proof 1. We use the Binomial Theorem in the special case where x = 1 and y = −1 to obtain

0 = 0n

= (1 + (−1))n

=

n∑
k=0

(
n

k

)
· 1n−k · (−1)k

=

n∑
k=0

(−1)k
(
n

k

)
=

(
n

0

)
−
(
n

1

)
+

(
n

2

)
− · · ·+ (−1)n

(
n

n

)
.

This gives the first claim. Adding
(
n
k

)
to both sides for each odd k, we conclude that(

n

0

)
+

(
n

2

)
+

(
n

4

)
+ · · · =

(
n

1

)
+

(
n

3

)
+

(
n

5

)
+ . . .

Since (
n

0

)
+

(
n

1

)
+

(
n

2

)
+ · · ·+

(
n

n

)
= 2n
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by the previous result, it follows that(
n

0

)
+

(
n

2

)
+

(
n

4

)
+ · · · = 2n−1 =

(
n

1

)
+

(
n

3

)
+

(
n

5

)
+ . . .

Proof 2. Let n ∈ N+ be arbitrary. We begin by giving a combinatorial proof for the second claim. We first
show that (

n

0

)
+

(
n

2

)
+

(
n

4

)
+ · · · = 2n−1

Let A be an arbitrary set with |A| = n, and list the elements of A as A = {a1, a2, . . . , an}. Recall that we
know that |P(A)| = 2n because for each i, we have 2 choices for whether or not to include ai in our subset.
Now in our case, the sum on the left (

n

0

)
+

(
n

2

)
+

(
n

4

)
+ . . .

counts the numbers of subset of A having an even number of elements. We argue that 2n−1 also counts the
number of subsets of A having an even number of elements. To build these subsets, we make the following
sequence of choices:

• Determine whether to include a1 in our subset: We have 2 choices.

• Determine whether to include a2 in our subset: We have 2 choices.

• . . .

• Determine whether to include an−1 in our subset: We have 2 choices.

• Finally, examine the first n − 1 choices, and determine whether we have included an even number of
ai. If so, do not include an in our subset. If not, include an in our subset.

Notice that in the last step, we do not make any choices, but do one of two things that are completely
determined by the previous choices. Now no matter what sequence of choices we make, we end up with
a subset of A having an even number of elements, and furthermore every subset with an even number of
elements arrises in a unique way. Since there are 2 choices in each of the opening n−1 stages, it follows that
there are 2n−1 many subsets of A with an even number of elements. Therefore,(

n

0

)
+

(
n

2

)
+

(
n

4

)
+ · · · = 2n−1

Now the proof that (
n

1

)
+

(
n

3

)
+

(
n

5

)
+ · · · = 2n−1

is completely analogous except for changing the last stage (or alternatively comes from the complement rule).
Finally, since both of these sums equals 2n−1, we conclude that(

n

0

)
−
(
n

1

)
+

(
n

2

)
− · · ·+ (−1)n

(
n

n

)
= 0.
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Proposition 3.13. For any n, k ∈ N+ with k ≤ n, we have

k ·
(
n

k

)
= n ·

(
n− 1

k − 1

)
hence (

n

k

)
=
n

k
·
(
n− 1

k − 1

)
.

Proof. We claim that each side counts the number of ways of selecting a committee consisting of k people,
including a distinguished president of the committee, from a group of n people. On the one hand, we can
do this as follows:

• First pick the committee of k people from the total group of all n people. We have
(
n
k

)
many ways to

do this.

• Within this committee, choose one of the k people to serve as president. We have k options here.

Therefore, the number of possibilities is k ·
(
n
k

)
. On the other hand, we can count it as follows.

• First pick one of the n people to be the president.

• Next pick the remaining k − 1 many people to serve on the committee amongst the remaining n − 1
people. We have

(
n−1
k−1
)

many ways to do this.

Therefore, the number of possibilities is n ·
(
n−1
k−1
)
.

Since each side counts the number of elements of one set, the values must be equal. Therefore,

k ·
(
n

k

)
= n ·

(
n− 1

k − 1

)
.

Proposition 3.14. For any n, we have

n∑
k=1

k ·
(
n

k

)
= n · 2n−1.

Proof 1. We have

n∑
k=1

k ·
(
n

k

)
=

n∑
k=1

n ·
(
n− 1

k − 1

)
(by Proposition 3.13)

= n ·
n∑

k=1

(
n− 1

k − 1

)

= n ·
n−1∑
k=0

(
n− 1

k

)
= n · 2n−1 (by Corollary 3.11)

49



Proof 2. We give a direct combinatorial proof by arguing that both sides count the number of ways of
building a committee, including a distinguished president of that committee, of any size from a group of n
people.

One the one hand we can count the number of such committees as follows. We break up the situation
into cases based on the size of the committee. For a committee of size k including a distinguished president,
we know from Proposition 3.13 that there are k ·

(
n
k

)
many ways to do this. Since we can break up the

collection of all such committees into the pairwise disjoint union of those committees of size 1, those of size
2, etc. Therefore, by the sum Rule, the number of ways to do this is

∑n
k=1 k ·

(
n
k

)
.

On the other hand, we can count the number of such committees differently. First, pick the president
of the committee, and notice that we have n choices. Once we pick the president, we need to pick the rest
of the committee. Thus, we need to pick a subset (of any size) from the remaining n − 1 people to fill out
the committee, and we know that there are 2n−1 many subsets of a set of size n − 1. Therefore, there are
n · 2n−1 many such committees.

Since each side counts the number of elements of one set, the values must be equal. Therefore,

n∑
k=1

k ·
(
n

k

)
= n · 2n−1.

Proof 3. We give another proof using the Binomial Theorem, which tells us that

(x+ y)n =

n∑
k=0

(
n

k

)
xkyn−k

for all x, y ∈ R. Plugging in y = 1, we conclude that

(x+ 1)n =

n∑
k=0

(
n

k

)
xk

for all x ∈ R. Now each side is a function of the real variable x, so taking the derivative of each side, it
follows that

n(x+ 1)n−1 =

n∑
k=0

k

(
n

k

)
xk−1 =

n∑
k=1

k

(
n

k

)
xk−1

for all x ∈ R. Plugging in x = 1, we conclude that

n · 2n−1 =

n∑
k=1

k ·
(
n

k

)
This completes the proof.

Proposition 3.15. If k ≤ n, then

n∑
m=k

(
m

n

)
=

(
k

k

)
+

(
k + 1

k

)
+

(
k + 2

k

)
+ · · ·+

(
n

k

)
=

(
n+ 1

k + 1

)
and since

(
m
k

)
= 0 if m < k, it follows that

n∑
m=0

(
m

k

)
=

(
n+ 1

k + 1

)
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Proof. Using Proposition 3.9 repeatedly, we have:(
n+ 1

k + 1

)
=

(
n

k

)
+

(
n

k + 1

)
=

(
n

k

)
+

(
n− 1

k

)
+

(
n− 1

k + 1

)
=

(
n

k

)
+

(
n− 1

k

)
+

(
n− 2

k

)
+

(
n− 2

k + 1

)
=

(
n

k

)
+

(
n− 1

k

)
+

(
n− 2

k

)
+ · · ·+

(
k + 2

k + 1

)
=

(
n

k

)
+

(
n− 1

k

)
+

(
n− 2

k

)
+ · · ·+

(
k + 1

k

)
+

(
k + 1

k + 1

)
=

(
n

k

)
+

(
n− 1

k

)
+

(
n− 2

k

)
+ · · ·+

(
k + 1

k

)
+

(
k

k

)
.

where the last line follows from the fact that(
k + 1

k + 1

)
= 1 =

(
k

k

)
.

Plugging in k = 1, we get (
1

1

)
+

(
2

1

)
+

(
3

1

)
+ · · ·+

(
n

1

)
=

(
n+ 1

2

)
.

for all n ∈ N+. Since
(
m
1

)
= m for all m ∈ N+, it follows that

1 + 2 + 3 + · · ·+ n =

(
n+ 1

2

)
=
n(n+ 1)

2
.

for all n ∈ N+. Notice that letting k = 2, we conclude that that(
2

2

)
+

(
3

2

)
+

(
4

2

)
+ · · ·+

(
n

2

)
=

(
n+ 1

3

)
.

for all n ∈ N+. Since
(
1
2

)
= 0, we can also write this as(

1

2

)
+

(
2

2

)
+

(
3

2

)
+ · · ·+

(
n

2

)
=

(
n+ 1

3

)
.

Now we can use these to find a formula for the sum of the first n squares:

12 + 22 + 32 + · · ·+ n2

The idea is to find A,B ∈ R such that

m2 = A ·
(
m

1

)
+B ·

(
m

2

)
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is true for all m ∈ N+, because if we can do this, then we can use the above summation formulas for the two
sums that appear on the right. Since

(
m
1

)
= m for all m ∈ N+, and(

m

2

)
=
m(m− 1)

2

for all m ∈ N+ (even for m = 1 because then both sides are 0), we want to find A and B such that:

m2 = A ·m+B · m(m− 1)

2

for all m ∈ N+. Now

A ·m+B · m(m− 1)

2
= A ·m+B · m

2 −m
2

=

(
A− B

2

)
·m+

B

2
·m2

so equating coefficients with m2 = 0 ·m+ 1 ·m2, we want to solve the linear system:

A − 1
2 ·B = 0
1
2 ·B = 1

Now A = 1 and B = 2 as the unique solution to this system, so it follows that

m2 =

(
m

1

)
+ 2 ·

(
m

2

)
is true for all m ∈ N+. Thus, using Proposition 3.15, we conclude that

12 + 22 + · · ·+ n2 =

[(
1

1

)
+ 2 ·

(
1

2

)]
+

[(
2

1

)
+ 2 ·

(
2

2

)]
+ · · ·+

[(
n

1

)
+ 2 ·

(
n

2

)]
=

[(
1

1

)
+

(
2

1

)
+ · · ·+

(
n

1

)]
+ 2 ·

[(
1

2

)
+

(
2

2

)
+ · · ·+

(
n

2

)]
=

(
n+ 1

2

)
+ 2 ·

(
n+ 1

3

)
=

(n+ 1)n

2
+ 2 · (n+ 1)n(n− 1)

6

=
3(n+ 1)n

6
+

2(n+ 1)n(n− 1)

6

=
n(n+ 1)(3 + 2n− 2)

6

=
n(n+ 1)(2n+ 1)

6

One can generalize these techniques to get the sum of the first n cubes. Doing so would require finding
A,B,C ∈ R such that

m3 = A ·
(
m

1

)
+B ·

(
m

2

)
+ C ·

(
m

3

)
for all m ∈ N+. Although it’s not too onerous to do the algebra in order to set up the linear system, and
then solve for A,B,C, we will see more unified ways to determine these coefficients (along with for fourth
powers, etc.) soon.
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Suppose that we want to pick out 5 days from the month of February (having 28 days) in such a way
that we do not pick two consecutive days. How can we count it? Although we want to pick out an unordered
subset, one idea is to first count the number of ordered choices, and then divide by 5!. The idea then is to
pick out one day, and we have 28 choices. Once we’ve picked that day out, we then pick out a second day. It
may appear that we have 25 choices here because we’ve eliminated one day and it’s two neighbors. However,
that it is only true if we did not pick out the first or last days of February in our first choice. Thus, the
number of options in round two depends on our choice from round one. You might think about counting
those sets including the first and/or last days of February as special cases, but this doesn’t solve all of the
problems. For example, if we choose 11 and 18 in our first two rounds, then we’ve eliminated 6 days and
have 22 choices for the third round. However, if we choose 11 and 13 in our first two rounds, then we’ve
only eliminated 5 days and so have 23 choices for the third round. In other words, we need a new way to
count this.

Let’s attack the problem from a different angle. Instead of trying to avoid bad configurations directly,
we think about picking out an arbitrary subset of 5 days and “spreading” them to guarantee that the result
will not have any consecutive days. To do this, we will leave the lowest numbered day alone, but add 1 to
the second lowest day (to ensure we have a “gap” between the first two), and then add 2 to the middle day,
etc. More formally, given an arbitrary subset {a1, a2, a3, a4, a5} of [28] with a1 < a2 < a3 < a4 < a5, we
turn it into the subset {a1, a2 + 1, a3 + 2, a4 + 3, a5 + 4} which does not have any consecutive days. The only
problem is that now we might “overflow”. For example, although

{3, 4, 15, 16, 21} 7→ {4, 6, 17, 19, 25}

works out just fine, we also have

{1, 10, 21, 26, 27} 7→ {1, 11, 23, 30, 31}

which is not allowed. However, there’s an easy fix. Instead of picking our original subset from [28], we pick
it from [24], for a total of

(
24
5

)
many possibilities. In general, we have the following:

Proposition 3.16. The number of subsets of [n] = {1, 2, 3, . . . , n} of size k having no two consecutive
numbers equals

(
n−k+1

k

)
.

Proof. We establish a bijection between the k-element subsets of [n− k + 1] and the sets we want. Given a
subset {a1, a2, a3, . . . , ak} of [n− k + 1] with a1 < a2 < a3 < · · · < ak, we map it to the set {a1, a2 + 1, a3 +
2, . . . , ak + (k − 1)}, i.e. the ith element of the new set equals ai + (i − 1). Now since ai < ai+1 for each i,
we have that ai+1 − ai ≥ 1 for each i, and hence

ai+1 + ((i+ 1)− 1)− (ai + (i− 1)) = ai+1 + i− ai − i+ 1

= ai+1 − ai + 1

≥ 1 + 1

= 2

for i, so there are no consecutive elements in the resulting set. Furthermore, since ak ≤ n− k + 1, we have
ak + (k−1) ≤ n−k+ 1 + (k−1) = n, so the resulting subset is indeed a subset of [n] of size k having no two
consecutive elements. Notice that this function is injective because if {a1, a2 + 1, a3 + 2, . . . , ak + (k− 1)} =
{b1, b2 +1, b3 +2, . . . , bk +(k−1)}, then ai +(i−1) = bi +(i−1) for all i, hence ai = bi for all i. Furthermore,
given a subset {c1, c2, c3, . . . , ck} of [n] with c1 < c2 < c3 < · · · < cn and ci+1 − ci ≥ 2 for all i, we have
that {c1, c2 − 1, c3 − 2, . . . , ck − (k − 1)} is a subset of [n − k + 1] that maps to {c1, c2, c3, . . . , ck}, so it is
surjective. The result follows.
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What if we just wanted to count the number number of subsets of [n] having no two consecutive numbers,
without any size restrictions? One approach is to sum over all possible sizes to obtain:

n∑
k=0

(
n− k + 1

k

)
=

(
n+ 1

0

)
+

(
n

1

)
+

(
n− 1

2

)
+

(
n− 2

3

)
+ · · ·+

(
1

n

)

Of course, many of the terms on the right equal 0 because if k > n−k+ 1, i.e. if k > n+1
2 , then

(
n−k+1

k

)
= 0.

Thus, if we let bmc be the greatest integers less than or equal to m, then we have

bn+1
2 c∑

k=0

(
n− k + 1

k

)
For example, the number of subsets of [6] = {1, 2, 3, 4, 5, 6} having no two consecutive numbers is

3∑
k=0

(
7− k
k

)
=

(
7

0

)
+

(
6

1

)
+

(
5

2

)
+

(
4

3

)
= 1 + 6 + 10 + 4

= 21

while the number of subsets of [7] = {1, 2, 3, 4, 5, 6, 7} having no two consecutive numbers is

4∑
k=0

(
8− k
k

)
=

(
8

0

)
+

(
7

1

)
+

(
6

2

)
+

(
5

3

)
+

(
4

4

)
= 1 + 7 + 15 + 10 + 1

= 34.

Notice that we are summing up diagonals of Pascal’s triangle, and we are seeing Fibonacci numbers. You
will prove that this holds true generally on the homework.

Returning to the Binomial Theorem, what happens if we look powers of x+ y + z instead of x+ y? For
example, we have

(x+ y + z)2 = (x+ y + z)(x+ y + z)

= x(x+ y + z) + y(x+ y + z) + z(x+ y + z)

= xx+ xy + xz + yx+ yy + yz + zx+ zy + zz

Thus, we obtain a sum of 9 = 3 · 3 terms, where each term is an ordered product of two elements (with
repetition) from {x, y, z}. If we work out (x+y+z)3, we see a sum of 27 = 3 ·3 ·3 terms, where each possible
ordered sequence of 3 elements (with repetition) from {x, y, z} appears exactly once. In general, one expects
that we expand (x + y + z)n, then we obtain a sequence of 3n many terms where each possible ordered
sequence of n elements (with repetition) from {x, y, z} appears exactly once. What happens when we use
collapse these sums by using commutativity, so write xxz + xzx + zxx as 3x2z? In general, we are asking
what the coefficient of xaybzc will be in the result? Notice that we need only examine the coefficients where
a+ b+ c = n because each term involves a product of n of the variables. Suppose then that a+ b+ c = n.
To know the coefficient of xaybzc, we want to know the number of sequences of x’s, y’s, and z’s of length n
having exactly a many x’s, b many y’s, and c many z’s. To count these, we can first pick out that a positions
in which to place the x’s in

(
n
a

)
many ways. Next, we have n − a open positions, and need to pick out b

positions to place the y’s in
(
n−a
b

)
many ways. Finally, we have n− a− b = c many positions for the c many
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z’s, so they are completely determined. Thus, if a+ b+ c = n, then the coefficient of xaybzc in (x+ y + z)n

equals (
n

a

)
·
(
n− a
b

)
=

n!

a! · (n− a)!
· (n− a)!

b! · (n− a− b)!

=
n!

a! · b! · (n− a− b)!

=
n!

a! · b! · c!
.

More generally, suppose that we expand (x1 + x2 + · · ·+ xk)n. In the result, we will have a sum of term of
the form xa1

1 x
a2
2 · · ·x

ak

k where the ai ∈ N and a1 + a2 + · · · + ak = n. To determine the coefficient of such
a term, we need only determine the number of sequences of xi of length n such that there are exactly a1
many x1’s, exactly a2 many x2’s, . . . , and exactly ak many xk’s. Following the above template, the number
of such sequences equals(
n

a1

)
·
(
n− a1
a2

)
·
(
n− a1 − a2

a3

)
· · ·
(
n− a1 − a2 − · · · − ak−2

ak−1

)
·
(
n− a1 − a2 − · · · − ak−1

ak

)
=

(
n

a1

)
·
(
n− a1
a2

)
·
(
n− a1 − a2

a3

)
· · ·
(
n− a1 − a2 − · · · − ak−2

ak−1

)
·
(
ak
ak

)
=

n!

a1! · (n− a1)!
· (n− a1)!

a2! · (n− a1 − a2)!
· (n− a1 − a2)!

a3! · (n− a1 − a2 − a3)!
· · · (n− a1 − a2 − · · · − ak−1)!

ak−1! · (n− a1 − a2 − · · · − ak−2 − ak−1)!

=
n!

a1! · a2! · a3! · · · ak−1! · (n− a1 − a2 − · · · − ak−2 − ak−1)!

=
n!

a1! · a2! · a3! · · · ak−1! · ak!

Notice that this is just like our problem with anagrams of MISSISSIPPI. Instead of doing the above count,
we could have treated all the x1 as different (and x2 as different, etc.), rearranged them in n! many ways,
and then divided by the overcount from the permuting the xi within themselves in a1! ways, the x2 within
themselves in a2! many ways, etc.

Definition 3.17. If n, a1, a2, . . . , ak ∈ N and a1 + a2 + · · ·+ ak = n, we define(
n

a1, a2, . . . , ak

)
=

n!

a1! · a2! · · · ak!

We call this a multinomial coefficient.

The above argument proves the generalization of the Binomial Theorem:

Theorem 3.18 (Multinomial Theorem). For all n, k ∈ N+, we have

(x1 + x2 + · · ·+ xk)n =
∑(

n

a1, a2, . . . , ak

)
xa1
1 x

a2
2 · · ·x

ak

k

where the sum is taken over all k-tuples of nonnegative integers (a1, a2, . . . , ak) such that a1+a2+· · ·+ak = n.

3.3 Compositions and Partitions

3.3.1 Compositions

There are six different M&M colors: Red, Yellow, Blue, Green, Orange, Brown. Suppose that we want to
pick out 13 total M&M’s. How ways can you do it, if all that matters is how many of each color we take?
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Notice that we can model this as follows: if we let ai be the number that you choose with color i, then we
need a1 + a2 + a3 + a4 + a5 + a6 = 13.

Definition 3.19. Let n, k ∈ N. A sequence of nonnegative integers (a1, a2, . . . , ak) such that a1 + a2 + · · ·+
ak = n is called a weak composition of n into k parts. If all the ai are positive, then it is called a composition
of k into k parts.

For example (1, 3, 5, 3) is a composition of 12 into 4 parts and (2, 0, 5, 1, 0, 0) is a weak composition of 8
into 6 parts.

One can view the number of weak compositions of n into k parts as the number of ways to distribute n
identical balls into k distinct boxes. In this interpretation, the value ai is the number of balls that we put
into box i. We are treating the balls as identical because all that matters are the number of balls in each
box, but the boxes are distinct because (5, 2, 1) is different than (2, 5, 1).

We can also view these another way. Recall that a k-permutation of n distinct objects is a way to pick
out k of those objects where order matters and repetition is not allowed. Also, a k-combination of n distinct
objects is a way to pick out k of those objects where order does not matter and repetition is not allowed.
A different way to interpret a weak composition of n into k parts is as a way to pick out n objects from k
distinct objects where order doesn’t matter but repetition is allowed (yes, the n and k have switched, and
this is incredibly annoying). The value ai is the number of times that we pick out object i. Due to the fact
that order doesn’t matter but repetition is allowed, some sources think about something they call multisets.
The idea is to allow one to write something like “{1, 1, 4}” and think about it as different from “{1, 4}”, but
the same as “{1, 4, 1}”. Since, by definition, two sets are equal exactly when they have the same elements,
we should introduce new notation rather than { and } used in sets. Instead of dealing with all of these, we
write (2, 0, 0, 1) to represent that we picked the number 1 twice and the number 4 once.

The number of weak compositions of n into k parts is the number of nonnegative integer solutions to the
equation

x1 + x2 + · · ·+ xk = n

while the number of compositions of n into k parts is the number of positive integer solutions to the equation

x1 + x2 + · · ·+ xk = n.

How do we count the number of weak compositions of n into k parts? In the M&M case, think about
lining them up in order of color, so red first, then yellow, etc. If we eliminate the colors from the M&M’s
themselves, then we only need some kind of “marker” to distinguish when we change colors. If we represent
the M&M’s as dots, then we can place 5 bars to denote the dividing line as to when we switch colors. Since
we have 5 bars and 13 M&M’s that we have to put into a line, we have18 positions and need to choose the
positions for the 5 bars. Therefore, there are

(
18
5

)
many possibilities.

Proposition 3.20. Let n, k ∈ N. The number of weak compositions of n into k parts is(
n+ k − 1

k − 1

)
=

(
n+ k − 1

n

)
.

Proof. As above, there is a bijection between arrangements of n dots and k − 1 bars into a line and weak
compositions of n into k parts (the number of dots before the first bar is a1, then number of dots between
the first and second is a2, etc.). Since we want to place n + k − 1 many objects and need only choose the
k − 1 positions for the bars, or alternatively the n positions for the dots. Therefore, the number of weak
compositions of n into k parts equals (

n+ k − 1

k − 1

)
=

(
n+ k − 1

n

)
.
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Another way to visualize this is as follows: Consider the following bijection between subsets of [n+k−1]
of size n and weak compositions of n into k parts: Given a subset {a1, a2, . . . , an} of [n + k − 1] with
a1 < a2 < · · · < an, consider the multiset “{a1, a2− 1, a3− 2, . . . , an− (n− 1)}” and form the corresponding
weak composition. For example if k = 5 and n = 3, then n+ k − 1 = 7 and we do the following:

{1, 2, 3} 7→ “{1, 1, 1}” 7→ (3, 0, 0, 0, 0)

{1, 3, 7} 7→ “{1, 2, 5}” 7→ (1, 1, 0, 0, 1)

{3, 4, 6} 7→ “{3, 3, 4}” 7→ (0, 0, 2, 1, 0)

More formally, given a subset {a1, a2, . . . , an} of [n+k−1] with a1 < a2 < · · · < an, we send it the sequence
(b1, b2, . . . , bk) where b` equals the number of i such that ai − (i − 1) = `, i.e. the cardinality of the set
{i : ai = i+ `− 1}.

Now that we’ve determined the number of weak compositions of n into k parts, we can answer the count
the number of compositions of n into k parts. The idea is that if k ≤ n, then the number of positive integer
solutions to the equation

x1 + x2 + · · ·+ xk = n

equals to the number of nonnegative solutions to

x1 + x2 + · · ·+ xk = n− k

Corollary 3.21. Let n, k ∈ N with k ≤ n. The number of compositions of n into k parts equals(
n− 1

k − 1

)
=

(
n− 1

n− k

)
.

Proof. First distribute one ball to each of the k boxes . We now have n − k balls to put into k boxes with
no restrictions, and so we want to count the number of weak compositions of n− k into k parts. The answer
to this is: (

(n− k) + k − 1

k − 1

)
=

(
n− 1

k − 1

)
Since (n− 1)− (k − 1) = n− k, this also equals (

n− 1

n− k

)
.

More formally, given a weak composition (a1, a2, . . . , ak) of n − k into k parts, the sequence (a1 + 1, a2 +
1, . . . , ak + 1) is composition of n into k parts, and this mapping is a bijection.

Another way to visualize the previous corollary with a direct bijection is as follows: Consider the function

(a1, a2, . . . , ak) 7→ {a1, a1 + a2, . . . , a1 + a2 + · · ·+ ak−1}

from compositions of n into k parts to (k − 1)-element subsets of [n− 1]. For example if n = 10 and k = 4,
then

(1, 2, 3, 4) 7→ {1, 3, 6}
(6, 1, 1, 2) 7→ {6, 7, 8}
(2, 1, 1, 6) 7→ {2, 3, 4}
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Notice that since ai ≥ 1 for all i, we have a1 < a1 + a2 < · · · < a1 + a2 + · · · + ak−1. Now since
a1 + a2 + · · ·+ ak = n and ak ≥ 1, it follows that a1 + a2 + · · ·+ ak−1 ≤ n− 1, and hence the set on the right
is an element of [n− 1]. Finally, one must check that this is a bijection, but I’ll leave that to you (since we
already have a proof of the result).

What happens if we try to count all compositions of a number n without specifying the number of parts?
For example, we have 4 compositions of 3 given by (3), (1, 2), (2, 1), and (1, 1, 1). The compositions of 4 are
(4), (1, 3), (3, 1), (2, 2), (2, 1, 1), (1, 2, 1), (1, 1, 2), and (1, 1, 1, 1), so we have 8 of those.

Theorem 3.22. The number of compositions of n is 2n−1.

Proof. We give two proofs. The first is to notice that a composition of n must be a composition of n into k
parts for some unique k with 1 ≤ k ≤ n. Therefore, the number of compositions of n equals

n∑
k=1

(
n− 1

k − 1

)
=

(
n− 1

0

)
+

(
n− 1

1

)
+

(
n− 1

2

)
+ · · ·+

(
n− 1

n− 1

)

=

n−1∑
k=0

(
n− 1

k

)
= 2n−1. (by Corollary 3.11)

Alternatively, we can give a direct combinatorial proof. Write down n dots. Notice that we can not put a
bar before the first dot or after the last one, and we also can not put two bar in the same place because in a
composition all numbers must be positive. Therefore, a composition arises by picking a subset of the n− 1
spaces between the dots to serve as bars (i.e. the dividers). Since there are 2n−1 many subsets of a set with
n− 1 many elements, it follows that there are 2n−1 many compositions of n.

3.3.2 Set Partitions

Above we considered the case where the balls were identical and the boxes were distinct. Now consider the
case where the balls are distinct but the boxes are identical.

Definition 3.23. A (set) partition of a set A is a set {B1, B2, . . . , Bk} where the Bi are nonempty pairwise
disjoint subsets of A with

A = B1 ∪B2 ∪ · · · ∪Bk

In this case, we call this a partition of A into k nonempty parts.

Definition 3.24. Given n, k ∈ N+ with k ≤ n, we define S(n, k) to be the number of partitions of [n] into k
nonempty parts. The numbers S(n, k) are called the Stirling numbers of the second kind and are sometimes
denoted by:

S(n, k) =

{
n

k

}
.

We also define S(0, 0) = 1, S(n, 0) = 0 if n ≥ 1, and S(n, k) = 0 if k > n.

For example, we have S(3, 2) = 3 because the following are all possible partitions of [3] = {1, 2, 3} into 2
parts:

• {{1}, {2, 3}}

• {{2}, {1, 3}}

• {{3}, {1, 2}}
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Notice that these are all of them because if we partition [3] into 2 parts, then one must have size 1 and the
other have size 2, so the partition is completely determined by the choice of the the element that is in its
own block (and hence there are

(
3
1

)
= 3 many choices).

Here are few more examples:

• If n ≥ 1, then
S(n, 1) = 1 = S(n, n)

because the only partition on [n] into one part is {{1, 2, 3, . . . , n}} and the only partition into n parts
is {{1}, {2}, . . . , {n}}.

• We have S(4, 3) =
(
4
2

)
= 6 because such a partition must have one set of size 2 and the others of size

1, so we need only choose the subset of size 2.

• More generally, for any n ≥ 2, we have

S(n, n− 1) =

(
n

2

)
because a partition of [n] into n− 1 many blocks must have one block of size 2 and n− 2 of size 1, so
we need to pick the two unique elements for the block of size 2.

• The number S(4, 2) is more interesting. We can partition {1, 2, 3, 4} into a set of size 3 and a set of
size 1, or into two sets of size 2. There are

(
4
1

)
= 4 ways to do the former because we need only pick

the element in the set of size 1. For the latter, there are 3 possibilities:

– {{1, 2}, {3, 4}}
– {{1, 3}, {2, 4}}
– {{1, 4}, {2, 3}}

Therefore, S(4, 2) = 4 + 3 = 7.

In general, the numbers S(n, k) are difficult to compute. Recall that(
n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
whenever k, n ∈ N+. We get a similar recurrence here.

Theorem 3.25. For all k, n ∈ N+ with k ≤ n, we have

S(n, k) = S(n− 1, k − 1) + k · S(n− 1, k).

In other words, if k ≤ n, then {
n

k

}
=

{
n− 1

k − 1

}
+ k ·

{
n− 1

k

}
.

Proof. A partition of [n] into k parts is of one of two possible types:

• Case 1: The number n is in a block by itself. If we remove the block {n}, then we are left with a
partition of [n − 1] into k − 1 parts, so there are S(n − 1, k − 1) many such possibilities. Notice that
every partition of [n] into k blocks having {n} as one of the blocks arises in a unique way from such a
partition of [n− 1] into k − 1 parts. Thus, there are S(n− 1, k − 1) many partitions of this type.
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• Case 2: The number n is not in its own block. If we remove n from its block, we then obtain a partition
of [n − 1] into k parts, and there are S(n − 1, k) many possible outcomes. Notice that each of these
outcomes arise in k many ways because given a partition of [n − 1] into k blocks, we can add n into
any of the blocks to obtain a partition of [n] into k parts. Therefore, there are k · S(n − 1, k) many
partitions of this type.

It follows that S(n, k) = S(n− 1, k − 1) + k · S(n− 1, k).

We now get a triangle like Pascal’s triangle, but with S(n, k) =
{
n
k

}
in place of C(n, k) =

(
n
k

)
.{

n
k

}
0 1 2 3 4 5 6 7

0 1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
2 0 1 1 0 0 0 0 0
3 0 1 3 1 0 0 0 0
4 0 1 7 6 1 0 0 0
5 0 1 15 25 10 1 0 0
6 0 1 31 90 65 15 1 0
7 0 1 63 301 350 140 21 1

Given n, k ∈ N+, recall that we have the following:

• The number of functions f : [n]→ [k] equals kn because for each i ∈ [n], we have k possibilities for the
value of f(i).

• If k < n, then there are no injective functions f : [n]→ [k] by the Pigeonhole Principle.

• If k > n, then the number of injective functions f : [n] → [k] equal k(k − 1)(k − 2) · · · (k − n + 1) =
(k)n = k!

(k−n)! because we have k choices for the value of f(1), then k−1 for the value of f(2), . . . , and

finally k − (n− 1) for the value of f(n).

Proposition 3.26. Given n, k ∈ N+, there are exactly k! · S(n, k) many surjective functions f : [n]→ [k].

Proof. If k > n, then there are no surjective functions f : [n] → [k], and k! · S(n, k) = k! · 0 = 0. Suppose
then that k < n. Consider a surjective f : [n] → [k]. For each c ∈ [k], let Bc = {a ∈ [n] : f(a) = c}, i.e. Bc

is the set of all elements of [n] than map to c. Since f is surjective, we know that Bc 6= ∅ for all c ∈ [k].
Furthermore, since f is a function, the sets B1, B2, . . . , Bk are pairwise disjoint, and [n] = B1∪B2∪· · ·∪Bk.
Therefore, {B1, B2, . . . , Bk} is a partition of [n]. Notice that each of these partitions arise in k! many ways
because we can reorder the Bi in terms of their outputs, i.e. if n = 4 and k = 2 then {{1, 4}, {2, 3}} is a
partition arising from both the function

f(1) = 1 f(2) = 2 f(3) = 2 f(4) = 1

and the function
f(1) = 2 f(2) = 1 f(3) = 1 f(4) = 2

In other words, every surjective function arises uniquely from a partition of [n] together with a permutation
of [k]. Therefore, the number of surjective functions f : [n]→ [k] equals k! · S(n, k).

Theorem 3.27. For all m,n ∈ N+, we have

mn =

n∑
k=1

k! · S(n, k) ·
(
m

k

)
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i.e.

mn =

n∑
k=1

k! ·
{
n

k

}
·
(
m

k

)
Proof. The left-hand side mn is simply the number of functions from [n] to [m]. The key fact is that given
any function f : A → B, if we let C = range(f), then we can view f as a surjective function f : A → C.
Thus, every function f : [n]→ [m] can be viewed as a surjective function onto some nonempty subset of [m].
Now given a subset X ⊆ [m] with |X| = k, we know from the previous proposition that there are k! ·S(n, k)
many surjections from [n] to X. For a fixed k, there are

(
m
k

)
many subsets of [m] of size k, so there are(

m
k

)
· k! · S(n, k) many functions from [n] to [m] whose range has size k. Summing over all possible sizes for

the range, we conclude that the number of functions from [n] to [m] equals

n∑
k=1

k! ·
{
n

k

}
·
(
m

k

)
.

Therefore,

mn =

n∑
k=0

(
m

k

)
· k! · S(n, k).

In particular, we have

m2 = 1 · 1 ·
(
m

1

)
+ 2 · 1 ·

(
m

2

)
= 1 ·

(
m

1

)
+ 2 ·

(
m

2

)
for all m ∈ N as we learned above. We also have

m3 = 1 · 1 ·
(
m

1

)
+ 2 · 3 ·

(
m

2

)
+ 6 · 1 ·

(
m

3

)
= 1 ·

(
m

1

)
+ 6 ·

(
m

2

)
+ 6 ·

(
m

3

)
and

m4 = 1 · 1 ·
(
m

1

)
+ 2 · 7 ·

(
m

2

)
+ 6 · 6 ·

(
m

3

)
+ 24 · 1 ·

(
m

4

)
= 1 ·

(
m

1

)
+ 14 ·

(
m

2

)
+ 36 ·

(
m

3

)
+ 24 ·

(
m

4

)
for all m ∈ N. Using these formulas together with Proposition 3.15, we can now develop formulas for the
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sum of the first n cubes, the first n fourth powers, etc. For example, we have

n∑
m=1

m3 =

n∑
m=1

(
1 ·
(
m

1

)
+ 6 ·

(
m

2

)
+ 6 ·

(
m

3

))

=

n∑
m=1

(
m

1

)
+ 6 ·

n∑
m=1

(
m

2

)
+ 6 ·

n∑
m=1

(
m

3

)
=

(
n+ 1

2

)
+ 6 ·

(
n+ 1

3

)
+ 6 ·

(
n+ 1

4

)
=

(n+ 1)n

2
+ 6 · (n+ 1)n(n− 1)

6
+ 6 · (n+ 1)n(n− 1)(n− 2)

24

=
(n+ 1)n

2
+ (n+ 1)n(n− 1) +

(n+ 1)n(n− 1)(n− 2)

4

=
(n+ 1)n

4
· (2 + 4(n− 1) + (n− 1)(n− 2))

=
(n+ 1)n

4
· (2 + 4n− 4 + n2 − 3n+ 2)

=
(n+ 1)n

4
· (n2 + n)

=
(n+ 1)2n2

4

=

(
n(n+ 1)

2

)2

Therefore, we obtain the surprising result that

n∑
m=1

m3 =

(
n∑

m=1

m

)2

for all n ∈ N+.

Definition 3.28. Let n ∈ N. The number of all partitions of [n] into nonempty parts is denoted by B(n)
and is called the nth Bell number. We also define B(0) = 0. Notice that

B(n) =

n∑
k=0

S(n, k) =

n∑
k=0

{
n

k

}
for all n ∈ N.

Recall than an equivalence relation on A induces a partition of A into nonempty parts through the
equivalence classes. Conversely, it’s not hard to show that if {B1, B2, . . . , Bk} is a partition of A with each
Bi 6= ∅, then then the relation a ∼ b if there exists an i with a, b ∈ Bi is an equivalence relation on A whose
equivalence classes are the Bi. Therefore, B(n) equals the number of equivalence relations on a set of size n.

Adding up the rows of the above table, we get
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n B(n)

0 1
1 1
2 2
3 5
4 15
5 52
6 203
7 877

Theorem 3.29. For any n ∈ N, we have

B(n+ 1) =

n∑
k=0

(
n

k

)
·B(k)

Proof. We need to argue that the right-hand side counts the number of partitions of [n+ 1]. We look at the
block containing n+ 1. We examine how many elements are not in the block containing n+ 1. If there are
k such elements, then there are

(
n
k

)
many ways to choose these elements (and hence choose the n− k many

elements of [n] grouped with n+ 1) and then B(k) many ways to partition them. Thus,

B(n+ 1) =

n∑
k=0

(
n

k

)
·B(k)

Alternatively, we can count as follows. If that block has has k, then there are
(

n
k−1
)

many ways to choose
the other elements in the block, and then B(n+ 1− k) many ways to partition the rest. Thus

B(n+ 1) =

n+1∑
k=1

(
n

k − 1

)
·B(n+ 1− k)

=

n∑
k=0

(
n

k

)
·B(n− k)

=

n∑
k=0

(
n

n− k

)
·B(k)

=

n∑
k=0

(
n

k

)
·B(k)

3.3.3 Integer Partitions

We’ve seen that compositions correspond to ways to distribute n identical balls to k distinct boxes in such
a way that each box receives at least one ball. Also, (set) partitions correspond to ways to distribute n
distinct balls to k identical boxes in such a way that each box receives at least one ball. We now introduce
(integer) partitions that correspond to ways to distribute n identical balls to k identical boxes in such a way
that each box receives at least one ball.

Definition 3.30. An (integer) partition of an n ∈ N into k parts is a composition (a1, a2, . . . , ak) of n
where a1 ≥ a2 ≥ · · · ≥ ak. The number of partitions of n into k parts is denoted by p(n, k). We also define
p(0, 0) = 1
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Notice that p(n, 0) = 0 if n ≥ 1 and p(n, k) = 0 if k > n. We have p(4, 2) = 2 because (2, 2) and (3, 1) are
the only partitions. Notice that p(7, 3) = 1 because the partitions are (5, 1, 1), (4, 2, 1), (3, 3, 1), and (3, 2, 2).

Definition 3.31. The number of partitions of n (into any number of parts) is denoted by p(n), so

p(n) =

n∑
k=0

p(n, k).

Theorem 3.32. For all n, k ∈ N with 0 < k < n, we have

p(n, k) =

k∑
i=1

p(n− k, i)

= p(n− k, 1) + p(n− k, 2) + · · ·+ p(n− k, k)

Proof. Suppose that you have a partition of n into k parts. Remove 1 from each of these parts. This gives
a partition of n− k into some number of parts which is at most k. Since k < n, something must be left.

Thus, we have
p(7, 3) = p(4, 1) + p(4, 2) + p(4, 3)

and
p(7, 4) = p(3, 1) + p(3, 2) + p(3, 3) + p(3, 4) = p(3, 1) + p(3, 2) + p(3, 3)

∗ 0 1 2 3 4 5 6 7

0 1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
2 0 1 1 0 0 0 0 0
3 0 1 1 1 0 0 0 0
4 0 1 2 1 1 0 0 0
5 0 1 2 2 1 1 0 0
6 0 1 3 3 2 1 1 0
7 0 1 3 4 3 2 1 1

Adding up the rows, we get

n p(n)

0 1
1 1
2 2
3 3
4 5
5 7
6 11
7 15

The question of how fast p(n) grows is extremely interesting and subtle. It turns out that

p(n) ∼ 1

4
√

3
· exp

(
π

√
2n

3

)
where exp(x) = ex and f(n) ∼ g(n) means that

lim
n→∞

f(n)

g(n)
= 1.
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3.4 Inclusion-Exclusion

Recall that if A and B are any finite sets, then

|A ∪B| = |A|+ |B| − |A ∩B|.

What about three sets, i.e. if we wanted to count |A ∪ B ∪ C|? A natural guess would be that we need to
subtract off the various intersection, so one might hope that |A ∪B ∪ C| equals

|A|+ |B|+ |C| − |A ∩B| − |A ∩ C| − |B ∩ C|

Let’s examine if this is correct. Notice that if x ∈ A, but x /∈ B and x /∈ C, then x contributes 1 to |A∪B∪C
and in the formula it contributes

1 + 0 + 0− 0− 0− 0 = 1.

Similar arguments words if x is in only B, or x is in only C. Let’s examine what happens if x is in two of the
sets, say x ∈ A, x ∈ B, but x /∈ C. Again, x contributes 1 to |A ∪B ∪ C|, and in the formula it contributes

1 + 1 + 0− 1− 0− 0 = 1.

Again, everything looks good so far. Finally, suppose that x is an element of each of A, B, and C. As usual,
x contributes 1 to |A ∪B ∪ C|, but in the formula it contributes

1 + 1 + 1− 1− 1− 1 = 0.

Thus, elements that are if A∩B ∩C are not counted at all on the right-hand side. To correct this, we need
to add it back in. We then claim that the correct formula is

|A ∪B ∪ C| = |A|+ |B|+ |C| − |A ∩B| − |A ∩ C| − |B ∩ C|+ |A ∩B ∩ C|.

Working though each of the possibilities, one can check that this count is correct to matter where x lies in
the Venn diagram of sets. How does this generalize? For four sets, one can show by working through all of
the cases that

|A1 ∪A2 ∪A3 ∪A4| = |A1|+ |A2|+ |A3|+ |A4|
− |A1 ∩A2| − |A1 ∩A3| − |A1 ∩A4| − |A2 ∩A3| − |A2 ∩A4| − |A3 ∩A4|
+ |A1 ∩A2 ∩A3|+ |A1 ∩A2 ∩A4|+ |A1 ∩A3 ∩A4|+ |A2 ∩A3 ∩A4|
− |A1 ∩A2 ∩A3 ∩A4|.

It’s tedious to check them all possibilities here, and so would like a way to prove that this works in general.
We’ll do that below, but first we’ll demonstrate how to use these formulas to count an interesting set. For
our example, we will count the number of primes less than or equal to 120. Before jumping into this, we
prove a few small but important facts.

Proposition 3.33. Let n ∈ N+ with n ≥ 2. If n is not prime, then there is a prime p such that p | n and
p ≤
√
n.

Proof. Suppose that n is not prime. Since n is not prime, we can fix d ∈ N with 1 < d < n such that d | n.
Fix c ∈ Z with cd = n. Notice that c > 0 because both d > 0 and n > 0, and moreover we must have
1 < c < n (if c = 1 then d = n, and if c = n then d = 1). Now at least one of c ≤

√
n or c ≤

√
n must be

true because otherwise n = cd >
√
n ·
√
n = n. In either case, this number has a prime divisor less than or

equal to it, so n has a prime prime divisor p with p ≤
√
n.

Proposition 3.34. If p ∈ Z is prime and p | ab, then either p | a or p | b.
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Proof. Suppose that p | ab and p - a. Since gcd(a, p) divides p and we know that p - a, we have gcd(a, p) 6= p.
The only other positive divisor of p is 1, so gcd(a, p) = 1. Therefore, by the Proposition 2.22, we conclude
that p | b.

Now that we’ve handled the product of two numbers, we get the following corollary about finite products
by a trivial induction.

Corollary 3.35. If p is prime and p | a1a2 · · · an, then p | ai for some i.

Proposition 3.36. If a, b, c ∈ Z are such that a | c, b | c, and gcd(a, b) = 1, then ab | c.

Proof. Since a | c and b | c, we may fix m,n ∈ Z with c = am and c = bn. Since gcd(a, b) = 1, we may fix
k, ` ∈ Z with ak + b` = 1. Multiplying this equation through by c, we have cak + cb` = c. Therefore

c = cak + cb`

= (bn)ak + (am)b`

= ab(nk +m`)

Since nk +m` ∈ Z, it follows that ab | n.

Proposition 3.37. Let a ∈ Z and let p1, p2, . . . , pk be distinct primes. If pi | a for all i, then p1p2 · · · pk | a.

Proof. We prove the result by induction on k. Notice that if k = 1, then the statement is trivial. Suppose
that we know the statement is true for a fixed k ∈ N. Let p1, p2, . . . , pk, pk+1 be distinct primes with the
property that pi | a for all i. By induction, we know that p1p2 · · · pk | a. We also have that pk+1 | a by
assumption. Now if pk+1 | p1p2 · · · pk then we would have pk+1 | pi for some i ≤ k by Corollary 3.35, so
either pk+1 = 1 or pk+1 = pi, a contradiction (because the pi are distinct primes). Since pk+1 - p1p2 · · · pk,
we must have gcd(p1p2 · · · pk, pk+1) = 1. Since both p1p2 · · · pk | a and pk+1 | a, we may use Proposition 3.36
to conclude that p1p2 · · · pkpk+1 | a. This completes the induction.

We now return to counting the number of primes in [120]. By Proposition 3.33, if a ∈ [120] is not prime
and a ≥ 2, then a is divisible by prime less than or equal to

√
a ≤
√

120. Now the primes less than or equal
to
√

120 < 11 are 2, 3, 5, and 7. We thus let p1 = 2, p2 = 3, p3 = 5, and p4 = 7. For each i, let Ai be the
set of numbers in [120] divisible by pi. We count

|A1 ∪A2 ∪A3 ∪A4|

which is the number of elements of [120] that are divisible by at least one 2, 3, 5, or 7. We have

|A1| =
120

2
= 60 |A2| =

120

3
= 40 |A3| =

120

5
= 24 |A4| =

⌊
120

7

⌋
= 17

To determine the cardinalities of intersections, we use Proposition 3.37. For example, the numbers divisible
by both 2 and 3 are the numbers divisible by 6. Working these out, we conclude that

|A1 ∩A2| =
120

6
= 20 |A1 ∩A3| =

120

10
= 12 |A1 ∩A4| =

⌊
120

14

⌋
= 8

|A2 ∩A3| =
120

15
= 8 |A2 ∩A4| =

⌊
120

21

⌋
= 5 |A3 ∩A4| =

⌊
120

35

⌋
= 3

Next we compute

|A1 ∩A2 ∩A3| =
120

30
= 4 |A1 ∩A2 ∩A4| =

⌊
120

42

⌋
= 2
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|A1 ∩A3 ∩A4| =
120

70
= 1 |A2 ∩A3 ∩A4| =

⌊
120

105

⌋
= 1

and

|A1 ∩A2 ∩A3 ∩A4| =
⌊

120

210

⌋
= 0

Thus

|A1 ∪A2 ∪A3 ∪A4| = (60 + 40 + 24 + 17)− (20 + 12 + 8 + 8 + 5 + 3) + (4 + 2 + 1 + 1)− 0 = 93

By the Complement Rule, it follows that there are

120− 93 = 27

many numbers in [120] that not divisible by any of 2, 3, 5, or 7. All of these except 1 are prime, so this gives
26 new primes in [120]. Adding back in the primes 2, 3, 5, and 7, we see that there are 30 primes in [120].

Theorem 3.38 (Inclusion-Exclusion). Let A1, A2, . . . , An be finite sets. We then have

|A1 ∪A2 ∪ · · · ∪An| =
∑

S⊆[n]\{∅}

(−1)|S|−1 · |
⋂
i∈S

Ai|

=

n∑
k=1

(−1)k−1
∑

S⊆[n],|S|=k

|
⋂
i∈S

Ai|

Less formally, this says that

|A1 ∪A2 ∪ · · · ∪An| =
∑
i

|Ai| −
∑
i<j

|Ai ∩Aj |+
∑

i<j<k

|Ai ∩Aj ∩Ak| − . . .

Proof. Suppose that x ∈ A1 ∪A2 ∪ · · · ∪An. Let T = {i ∈ [n] : x ∈ Ai}, i.e. T is the nonempty set of indices
i such that x ∈ Ai. Let k = |T | and notice that k ≥ 1. We examine the number of times that x is counted
on each side. On the left, x contributes 1 to the cardinality. On the right, it contributes(

k

1

)
−
(
k

2

)
+

(
k

3

)
− · · ·+ (−1)k−1

(
k

k

)
to the sum. Now from Corollary 3.12, we know that(

k

0

)
−
(
k

1

)
+

(
k

2

)
−
(
k

3

)
+ · · · − (−1)k

(
k

k

)
= 0.

Hence (
k

1

)
−
(
k

2

)
+

(
k

3

)
− · · ·+ (−1)k−1

(
k

k

)
=

(
k

0

)
= 1

Therefore, every x ∈ A1 ∪A2 ∪ · · · ∪An contributes 1 to both sides. The result follows.

We next count the number of surjections f : [n]→ [k]. Of course we know that the answer is k! · S(n, k)
from by Proposition 3.26,, but we count it in a different way using Inclusion-Exclusion (from which we will
be able to derive a formula for S(n, k)). We first illustrate the general argument in the special case where
n = 7 and k = 4, i.e. we count the number of surjections f : [7]→ [4]. The idea is to count the complement.
We know that there are 47 many total functions f : [7]→ [4], so we count the number of functions that are
not surjective. Now a function can fail to be a surjective by missing 1, missing 2, missing 3, or missing 4.
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Thus, given i ∈ [4], we let Ai be the set of functions f : [7] → [4] such that i /∈ range(f). Then the set of
functions f : [7]→ [4] that are not surjective equals A1 ∪A2 ∪A3 ∪A4. Now we know that:

|A1 ∪A2 ∪A3 ∪A4| = |A1|+ |A2|+ |A3|+ |A4|
− |A1 ∩A2| − |A1 ∩A3| − |A1 ∩A4| − |A2 ∩A3| − |A2 ∩A4| − |A3 ∩A4|
+ |A1 ∩A2 ∩A3|+ |A1 ∩A2 ∩A4|+ |A1 ∩A3 ∩A4|+ |A2 ∩A3 ∩A4|
− |A1 ∩A2 ∩A3 ∩A4|.

To count |A1|, we need to count the number of functions f : [7] → [4] such that 1 /∈ range(f). This is just
the number of functions f : [7] → {2, 3, 4}, which equals 37. Similarly, |A2| = |A3| = |A4| = 37. To count
|A1 ∩A2|, we just need to count the number of functions f : [7]→ [4] such that 1, 2 /∈ range(f). This is just
the number of functions f : [7]→ {3, 4}, which equals 27. Following through on this, we conclude that

|A1 ∪A2 ∪A3 ∪A4| = 37 + 37 + 37 + 37

− 27 − 27 − 27 − 27 − 27 − 27

+ 17 + 17 + 17 + 17 + 17

− 0.

so
|A1 ∪A2 ∪A3 ∪A4| = 4 · 37 − 6 · 27 + 4 · 17

Notice that coefficients are
(
4
1

)
= 4,

(
4
2

)
= 6, and

(
4
3

)
= 4 because

(
4
m

)
is the number of ways to pick out m

elements from [4]. It follows that the number of surjective functions f : [7]→ [4] equals

47 − (4 · 37 − 6 · 27 + 4 · 17) = 47 − 4 · 37 + 6 · 27 − 4 · 17 = 8, 400.

We now generalize this argument.

Theorem 3.39. Let n, k ∈ N+ with k ≤ n. The number of surjections f : [n]→ [k] is

k∑
m=0

(−1)m
(
k

m

)
(k −m)n

Proof. The total number of functions f : [n] → [k] is kn. For each i ∈ [k], let Ai be the set of all functions
f : [n]→ [k] such that i /∈ range(f). We then have that

A1 ∪A2 ∪ · · · ∪Ak

is the set of all functions which are not surjective, and we count

|A1 ∪A2 ∪ · · · ∪Ak|

using Inclusion-Exclusion. Suppose that S ⊆ [k] with |S| = m. We then have that⋂
i∈S

Ai

is the set of functions whose range is contained in [k]\S, so since |[k]\S| = k −m, it follows that

|
⋂
i∈S

Ai| = (k − |S|)n = (k −m)n
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Therefore

|A1 ∪A2 ∪ · · · ∪Ak| =
∑

S⊆[k]\{∅}

(−1)|S|−1 · |
⋂
i∈S

Ai|

=

k∑
m=1

(−1)m−1
∑

S⊆[k],|S|=m

|
⋂
i∈S

Ai|

=

k∑
m=1

(−1)m−1
∑

S⊆[k],|S|=m

(k − |S|)n

=

k∑
m=1

(−1)m−1
(
k

m

)
(k −m)n

where the last line follows from the fact that
(
k
m

)
is the number of subsets of [k] of cardinality m. Thus, the

number of surjections f : [n]→ [k] is

kn −
k∑

m=1

(−1)m−1
(
k

m

)
(k −m)n = kn +

k∑
m=1

(−1)m
(
k

m

)
(k −m)n

=

k∑
m=0

(−1)m
(
k

m

)
(k −m)n

Corollary 3.40. Let n, k ∈ N+ with k ≤ n. We have

S(n, k) =
1

k!

k∑
m=0

(−1)m
(
k

m

)
(k −m)n

=

k∑
m=0

(−1)m
(k −m)n

m! · (k −m)!

Proof. We know that the number of surjections f : [n] → [k] equals k! · S(n, k) by Proposition 3.26, and it
also equals

k∑
m=0

(−1)m
(
k

m

)
(k −m)n

by Theorem 3.39. Therefore,

k! · S(n, k) =

k∑
m=0

(−1)m
(
k

m

)
(k −m)n

and hence

S(n, k) =
1

k!

k∑
m=0

(−1)m
(
k

m

)
(k −m)n

=

k∑
m=0

(−1)m
(k −m)n

m! · (k −m)!
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For example, since
4∑

m=0

(−1)m
(

4

m

)
(4−m)7 = 8, 400

form above, we have

S(7, 4) =
8, 400

24
= 350.

Definition 3.41. We define a function ϕ : N+ → N+ as follows. For each n ∈ N+, we let

ϕ(n) = |{a ∈ [n] : gcd(a, n) = 1}|

The function ϕ is called the Euler ϕ-function or Euler totient function.

For example, we have the following:

• ϕ(1) = 1 because gcd(1, 1) = 1.

• ϕ(4) = 2 because 1 and 3 are the only elements in [4] that are relatively prime with 4.

• ϕ(5) = 4 because 1, 2, 3, 4 are all relatively prime with 5, but gcd(5, 5) 6= 1.

• ϕ(6) = 2 because 1 and 5 are the only elements in [6] that are relatively prime with 6.

• ϕ(p) = p− 1 for all primes p because if 1 ≤ a < p, then gcd(a, p) = 1.

Proposition 3.42. If p ∈ N is prime and k ∈ N+, then

ϕ(pk) = pk − pk−1 = pk−1(p− 1) = pk ·
(

1− 1

p

)
Proof. Let

A = {a ∈ [pk] : gcd(a, pk) = 1}
By definition, we have that ϕ(pk) = |A|, so we need to count how many elements are in A. To this, we count
the complement. In other words, we determine the cardinality of

B = [pk]\A = {a ∈ [pk] : gcd(a, pk) 6= 1}.

Our claim is that
B = {pm : 1 ≤ m ≤ pk−1}

Suppose first that a = pm where 1 ≤ m ≤ pk−1. Notice that since 1 ≤ m ≤ pk−1, we have p ≤ pm ≤ ppk−1,
which is to say that p ≤ a ≤ pk, so a ∈ [pk]. Now we clearly have that p | a because a = pm, and we also
have p | pk because p = ppk−1 and k− 1 ≥ 0, so gcd(n, pk) 6= 1 because p > 1 is a common divisor. It follows
that a ∈ B, and since a was arbitrary we conclude that {pm : 1 ≤ m ≤ pk−1} ⊆ B.

Suppose conversely that a ∈ B. Let d = gcd(a, pk), so since a ∈ B we know that d > 1. Now the only
positive divisors of pk are 1, p, p2, . . . , pk, so since d | p and d 6= 1, we know that d ∈ {p, p2, . . . , pk}. Since p
divides every element of this set, it follows that p | d. Now we also know that d | a, so by transitivity of the
divisibility relation it follows that p | a. Thus, we fix m ∈ Z with a = pm. Notice that m > 0 because a > 0
and p > 0. Finally, we must have m ≤ pk−1 because otherwise m > pk−1 and so a = pm > pk, contradicting
our assumption that a ∈ B. Therefore, B ⊆ {pm : 1 ≤ m ≤ pk−1}.

We’ve shown that B = {pm : 1 ≤ m ≤ pk−1}. Now the set on the right has pk−1 many elements (one for
each choice of m), so |B| = pk−1. It follows that

ϕ(pk) = |[pk]\B| = pk − pk−1

The latter two formulas are not just simple algebra.
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Suppose that n = pq where p and q are distinct primes. Notice that if a ∈ [n] with gcd(a, n) 6= 1, then
a must be divisible by either p or q (or both). There are pq

p = q many elements divisible by p, and pq
q = p

many elements divisible by q. Also, there is one element divisible by both. Hence, there are p+ q − 1 many
elements divisible by at least one of p or q, and hence

ϕ(pq) = pq − (p+ q − 1)

= pq − p− q + 1

= (p− 1)(q − 1)

Theorem 3.43. Suppose that n ∈ N with n ≥ 2. Write n = pk1
1 p

k2
2 · · · p

k`

` where the pi are distinct primes.
We then have

ϕ(n) = n ·
(

1− 1

p1

)
·
(

1− 1

p2

)
· · ·
(

1− 1

p`

)
= pk1

1

(
1− 1

p1

)
· pk2

2

(
1− 1

p2

)
· · · pk`

`

(
1− 1

p`

)
= pk1

1 (p1 − 1) · pk2
2 (p2 − 1) · pk`

` (p` − 1)

= ϕ(pk1
1 ) · ϕ(pk2

2 ) · · ·ϕ(pk`

` )

Proof. For each i ∈ [`], let
Ai = {a ∈ [n] : pi | a}

We calculate
|A1 ∪A2 ∪ · · · ∪Ak|

and notice that this is the set of numbers which are not relatively prime to n. We have

|Ai| =
n

pi

For i < j we have

|Ai ∩Aj | =
n

pipj

while for i < j < k we have

|Ai ∩Aj ∩Ak| =
n

pipjpk

and so on. Thus
|A1 ∪A2 ∪ · · · ∪Ak| =

∑
i

n

pi
−
∑
i<j

n

pipj
+
∑

i<j<k

n

pipjpk
− . . .

It follows that

ϕ(n) = n−
∑
i

n

pi
+
∑
i<j

n

pipj
−
∑

i<j<k

n

pipjpk
+ . . .

= n ·

1−
∑
i

1

pi
+
∑
i<j

1

pipj
−
∑

i<j<k

1

pipjpk
+ . . .


= n ·

(
1− 1

p1

)(
1− 1

p2

)
· · ·
(

1− 1

p`

)
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For example, we have
504 = 23 · 32 · 7

so

ϕ(504) = ϕ(23) · ϕ(32) · ϕ(7)

= 4(2− 1) · 3(3− 1) · (7− 1)

= 4 · 6 · 6
= 144

Definition 3.44. A derangement of [n] is a permutation (a1, a2, . . . , an) of [n] such that ai 6= i for all i.

For example, (3, 1, 4, 2) is a derangement of [4], but (3, 2, 4, 1) is not (because a2 = 2).

Theorem 3.45. Let n ∈ N+. The number of derangements of [n] is

n! ·
n∑

k=0

(−1)k

k!

Proof. We know that there are n! many permutations of [n]. For each i ∈ [n], let Ai be the set of all
permutations (a1, a2, . . . , an) of [n] such that ai = i. We then have that

A1 ∪A2 ∪ · · · ∪An

is the set of all functions which are not derangements. We count

|A1 ∪A2 ∪ · · · ∪An|

using Inclusion-Exclusion. Suppose that S ⊆ [n] with |S| = k. We then have that⋂
i∈S

Ai

is the set of permutations of [n] such that ai = i for all i ∈ S. To count this, notice that k of the elements
are determined, and the remaining n− k elements can be permuted in the remaining n− k spots arbitrarily,
so

|
⋂
i∈S

Ai| = (n− |S|)! = (n− k)!

We then have

|A1 ∪A2 ∪ · · · ∪An| =
∑

S⊆[n]\{∅}

(−1)|S|−1 · |
⋂
i∈S

Ai|

=

n∑
k=1

(−1)k−1
∑

S⊆[n],|S|=k

|
⋂
i∈S

Ai|

=

n∑
k=1

(−1)k−1
∑

S⊆[n],|S|=k

(n− k)!

=

n∑
k=1

(−1)k−1
(
n

k

)
(n− k)!

=

n∑
k=1

(−1)k−1
n!

k!

= n! ·
n∑

k=1

(−1)k−1

k!
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Thus, the number of derangements of [n] is

n!− n! ·
n∑

k=1

(−1)k−1

k!
= n! ·

n∑
k=0

(−1)k

k!

Notice that the fraction of permutations that are derangements equals

n∑
k=0

(−1)k

k!
= 1− 1 +

1

2!
− 1

3!
+ · · ·+ (−1)n

n!

=
1

2!
− 1

3!
+ · · ·+ (−1)n

n!

For example, when n = 6, we have

1

2
− 1

6
+

1

24
− 1

120
+

1

720
=

53

144
≈ .36806

so approximately 36.8% of the permutations are derangements. When n = 7, we have

53

144
− 1

5040
=

1854

5040
=

103

280
≈ .36786

so again about 36.8% of the permutations are derangements. Now if you’ve seen infinite series, then you
know that

ex =

∞∑
k=0

xk

k!
= 1 + x+

x2

2!
+
x3

3!
+
x4

4!
− . . .

for all x ∈ R. In particular, when x = −1, we have

e−1 =

∞∑
k=0

(−1)k

k!

= 1− (−1) +
(−1)2

2!
− (−1)3

3!
+

(−1)4

4!
− . . .

=
1

2!
− 1

3!
+

1

4!
− . . .

Therefore, as n gets large, the percentage of permutations of [n] that are derangements approaches the
number

1/e ≈ .36788

3.5 Permutations

Recall that given a finite set A with |A| = n, we defined a permutation of A to be an element of An without
repeated elements. Consider the case where A = [n]. In this situation, we can view a permutation of A
differently. Instead of thinking about the finite sequence (a1, a2, . . . , an), we can think about the function
σ : [n] → [n] defined by letting σ(i) = ai for all i. For example, if n = 6, then we can think about the
permutation (5, 6, 3, 1, 4, 2) instead as the function σ : [6]→ [6] defined by:

• σ(1) = 5

• σ(2) = 6

73



• σ(3) = 3

• σ(4) = 1

• σ(5) = 4

• σ(6) = 2

Notice that since a permutation of [n] does not have any repeated elements, it follows that every element of
[n] appears exactly once as an output of the corresponding function, and hence the corresponding function
is a bijection. Conversely, given a bijection σ : [n]→ [n], the sequence (σ(1), σ(2), . . . , σ(n)) is a permutation
of [n]. In other words, permutations of [n] and bijections from [n] to [n] are really the same thing.

Rather than list out the values of the function as we did in our example above, we can instead write out
the values in a table. For example, for our σ above, we can write it as:(

1 2 3 4 5 6
5 6 3 1 4 2

)
In this table, entries on the top row are input values and corresponding entries on the bottom row are the
output values. Notice that bottom row is simply our original sequence. We call (5, 6, 3, 1, 4, 2) (or 563142
if we want to be even more compact) the one-line notation of σ and we call the above table the two-line
notation of σ.

At this point, you may wonder why we care about viewing permutations as functions or in two-line nota-
tion. The primary answer is that functions can be composed. Recall that the composition of two bijections
is a bijection by Proposition 1.38, so the composition of two permutations of [n] is again a permutation of
[n]. For example, consider the following two permutations of [6]:

σ =

(
1 2 3 4 5 6
5 6 3 1 4 2

)
τ =

(
1 2 3 4 5 6
3 1 5 6 2 4

)
Let’s compute σ◦τ . Remember that function composition happens from right to left. That is, the composition
σ ◦ τ is obtained by performing τ first and following after by performing σ. For example, we have

(σ ◦ τ)(2) = σ(τ(2)) = σ(1) = 5

Working through the 6 inputs, we obtain:

σ ◦ τ =

(
1 2 3 4 5 6
3 5 4 2 6 1

)
On the other hand, we have

τ ◦ σ =

(
1 2 3 4 5 6
2 4 5 3 6 1

)
Notice that σ ◦ τ 6= τ ◦ σ. Remember that function composition is not commutative in general!

Given a permutation σ of [n], we can define σ2 = σ ◦ σ, σ3 = σ ◦ σ ◦ σ, etc. Notice that since function
composition of associative by Proposition 1.33, we do not need to insert parentheses in things like σ3 because
we know that σ ◦ (σ ◦ σ) = (σ ◦ σ) ◦ σ. We now show that if we start with i ∈ [n] and repeatedly apply σ,
we eventually cycle back around to i.

Proposition 3.46. Let σ : [n] → [n] be a permutation and let i ∈ [n]. There exists k ∈ N+ with 1 ≤ k ≤ n
such that σk(i) = i. Moreover, if k is the least positive integer with σk(i) = i, then the numbers

i σ(i) σ2(i) σ3(i) . . . σk−1(i)

are distinct
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Proof. We first show that there exists k ∈ N+ with 1 ≤ k ≤ n such that σk(i) = i. Consider the first n+ 1
many numbers

σ(i) σ2(i) σ3(i) . . . σn(i) σn+1(i)

Since we have a list of n + 1 numbers, and only n possible values for those numbers, then there must
exist ` < m with σ`(i) = σm(i) by the Pigeonhole Principle. Since σm(i) = σ`(σm−`(i)), it follows that
σ`(σm−`(i)) = σ`(i). Now using the fact that σ` is injective (because it is a permutation as mentioned
above), it follows that σm−`(i) = i. Since 1 ≤ m − ` ≤ n, we have shown the existence of positive k ∈ N
with σk(i) = i.

Suppose now that k is the least positive integer with σk(i) = i. Assume that there is a repeat in the list:

i σ(i) σ2(i) σ3(i) . . . σk−1(i)

We may then fix 0 ≤ ` < m ≤ k with σ`(i) = σm(i). As above, this implies that σm−`(i) = i. Since
0 < m − ` < k, this would contradict the minimality of k. Therefore, we must have that the above values
are distinct.

With this proposition in mind, we now develop a new notation to represent permutations called cycle
notation. The basic idea is to take an element of [n] and follow its path through σ. For example, let’s work
with our

σ =

(
1 2 3 4 5 6
5 6 3 1 4 2

)
We begin by starting with 1, and notice that σ(1) = 5. Now instead of moving on to deal with 2, let’s
continue this thread and determine the value σ(5). Looking above, we see that σ(5) = 4. If we continue on
this path to investigate 4, we see that σ(4) = 1, and we have found a “cycle” 1→ 5→ 4→ 1 hidden inside
σ. We will denote this cycle with the notation (1 5 4). Now that those numbers are taken care of, we start
again with the smallest number not yet claimed, which in this case is 2. We have σ(2) = 6 and following up
gives σ(6) = 2. Thus, we have found the cycle 2→ 6→ 2 and we denote this by (2 6). We have now claimed
all numbers other than 3, and when we investigate 3 we see that σ(3) = 3, so we form the sad lonely cycle
(3). Putting this all together, we write σ in cycle notation as

σ = (1 5 4)(2 6)(3).

Notice that Proposition 3.46 justifies why we never “stuck” when trying to build these cycles. When we
start with 1 and follow the path, we can not repeat a number before coming back to 1. For example, we will
never see 1→ 3→ 6→ 2→ 6 because then the purported permutation must send both 3 and 2 to 6, which
would violate the fact that the purported permutation is injective. Also, if we finish a few cycles and start
up a new one, then it is not possible that our new cycle has any elements in common with previous ones.
For example, if we already have the cycle 1 → 3 → 2 → 1 and we start with 4, we can’t find 4 → 5 → 3
because then both 1 and 5 would map to 3.

Our conclusion is that this process of writing down a permutation in cycle notation never gets stuck and
results in writing the given permutation as a product of disjoint cycles. Working through the same process
with the permutation

τ =

(
1 2 3 4 5 6
3 1 5 6 2 4

)
we see that in cycle notation we have

τ = (1 3 5 2)(4 6).

Now we can determine σ ◦ τ in cycle notation directly from the cycle notations of σ and τ . For example,
suppose we want to calculate the following:

(1 2 4)(3 6)(5) ◦ (1 6 2)(3 5 4)
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We want to determine the cycle notation of the resulting function, so we first need to determine where it
sends 1. Again, function composition happens from right to left. Looking at the function represented on the
right, we see the cycle containing 1 is (1 6 2), so the right function sends 1 to 6. We then go to the function
on the left and see where it sends 6 The cycle containing 6 there is (3 6), so it takes 6 and sends it to 3.
Thus, the composition sends 1 to 3. Thus, our result starts out as

(1 3

Now we need to see what happens to 3. The function on the right sends 3 to 5, and the function on the left
takes 5 and leave it alone, so we have

(1 3 5

When we move on to see what happens to 5, we notice that the right function sends it to 4 and then the left
function takes 4 to 1. Since 1 is the first element the cycle we started, we now close the loop and have

(1 3 5)

We now pick up the least element not in the cycle and continue. Working it out, we end with:

(1 2 4)(3 6)(5) ◦ (1 6 2)(3 5 4) = (1 3 5)(2)(4 6)

Notice that cycle notation is not unique. For example, if n = 4, then (1 2 3 4) and (2 3 4 1) both represent
the same function, namely the function that sends 1 to 2, 2 to 3, 3 to 4, and 4 to 1. In general, we can always
“cyclically shift” a cycle without changing the actual function. Also, notice that (1 2)(3 4) = (3 4)(1 2), so
we can also swap the ordering of the disjoint cycles.

Let’s examine the possible cycle types for permutations of [4], along with the number of permutations
each types.

• One 4-cycle, such as (1 2 3 4): There are two ways to count the number of 4-cycles. One approach
is to list the elements of [4] in order in 4! ways, but realize that we are over counting because we can
cyclically shift each result in 4 ways to arrive at the same permutation. Thus, there are 4!

4 = 6 many
4-cycles. Alternatively, we can say that any 4-cycle can be shifted uniquely to put the 1 first, at which
point we have 3! = 6 many ways to arrange the three numbers after it.

• One 3-cycle and one 1-cycle, such as (1 2 3)(4): There are 4 · 2 = 8 many such permutations because
we need to choose the unique element that is in the 1-cycle in 4 possible ways, and then choose the
3-cycle in 3!

3 = 2 ways as in the argument for 4-cycles.

• Two 2-cycles, such as (1 2)(3 4): This one is a bit tricky. We can pick two element to go in one of the
cycles in

(
4
2

)
= 6 many ways, and once we pick this the other cycle is completely determined. However,

notice that we count each of these permutations twice with this method, because if we pick {1, 2}
then we are describing the permutation (1 2)(3 4), while if we pick {3, 4}, then we are describing the
permutation (3 4)(1 2) = (1 2)(3 4) as well. In other words, we can’t pick the “first” 2-cycle because
we can list the cycles in either order. Therefore, we need to divide by 2 to handle the overcount, and
so there are 3 possibilities here. Alternatively, one can notice that such a permutation is completely
determined by the element that is in the cycle with 1, and we have 3 choices.

• One 2-cycle and two 1-cycles, such as (1 2)(3)(4): In this case, we need only pick the two elements of
the 2-cycle (noting that order does not matter), and there are

(
4
2

)
= 6 many possibilities.

• Four 1-cycles, such as (1)(2)(3)(4): There is only 1 of these.

Notice that
6 + 8 + 3 + 6 + 1 = 24

as we expect because there are 4! = 24 many permutations of [4].
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Definition 3.47. Let k, n ∈ N with k ≤ n. The number of permutations of [n] with exactly k total cycles is
denoted by c(n, k) and is called the signless (or unsigned) Stirling numbers of the first kind. Alternatively,
these numbers are sometimes denoted by:

c(n, k) =

[
n

k

]
We also define c(0, 0) = 1, c(n, 0) = 0 if n ≥ 1, and c(n, k) = 0 if k > n.

For example, our above calculations show the following:

• c(4, 1) = 6.

• c(4, 2) = 8 + 3 = 11.

• c(4, 3) = 6.

• c(4, 4) = 1.

In general, we have the following values:

• c(n, n) = 1 for all n ∈ N+ because the only permutation of [n] with n many cycles is the one where all
elements of [n] are fixed.

• c(n, 1) = (n − 1)! for all n ∈ N+ because a permutation of [n] with only 1 cycles must be a cycle of
length n, and we can count this by looking at all n! many ways to list the elements, and then divide by
n for the n many cyclic shifts. Alternatively, we can place 1 at the front of the cycle, and then order
the other n− 1 elements in all possible (n− 1)! many ways afterwards.

• c(n, n − 1) =
(
n
2

)
(which also equals S(n, n − 1)) for all n ≥ 2. To see this, simply notice that a

permutation of [n] has exactly n− 1 many cycles if and only if it consists of n− 2 many 1-cycles and
2-cycles. Such a permutation is completely determined by the 2 elements in the 2-cycle.

Although we were able to directly calculate c(4, k) for each k, it becomes more difficult to compute values
like c(9, 3) because such a permutation may have three 3-cycles, or one 7-cycles and two 1-cycles, or a 5-
cycles and 2-cycles, or a 2-cycle, 3-cycle, and 4-cycles, etc. Rather than attempting to calculate these values
directly by looking at all possible cases, we now develop a recurrence similar to the one for the binomial
coefficients and Stirling numbers of the second kind.

Theorem 3.48. Let k, n ∈ N+ with k ≤ n. We have

c(n, k) = c(n− 1, k − 1) + (n− 1) · c(n− 1, k)

In other words, if k ≤ n, then [
n

k

]
=

[
n− 1

k − 1

]
+ (n− 1) ·

[
n− 1

k

]
Proof. We need to show that c(n− 1, k − 1) + (n− 1) · c(n− 1, k) counts the number of permutations of [n]
with exactly k cycles. We do this by considering two cases.

• Consider those permutations of [n] with exactly k cycles in which n forms a 1-cycle by itself, i.e. where
n is a fixed point of the permutation. Since n forms its own cycle, if we remove it, then the rest of
permutation must be a permutation of [n−1] with exactly k−1 cycles. Furthermore, every permutation
of [n− 1] with exactly k− 1 cycles arises uniquely in this way. Therefore, the number of permutations
of [n] with exactly k cycles in which n forms a 1-cycle by itself is c(n− 1, k − 1).
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• Now consider those permutations of [n] with exactly k cycles in which n does not form a 1-cycle by
itself, i.e. where n is not a fixed point of the permutation. If we simply delete n from the cycle notation,
we obtain a permutation of [n − 1] with exactly k cycles. For example, if n = 8 and k = 4, and we
have the permutation

(1 3 4)(2 8)(5 7)(6)

then by deleting 8 we arrive at the permutation

(1 3 4)(2)(5 7)(6)

Notice that we can also arrive at this latter permutation by deleting 8 from

(1 3 8 4)(2)(5 7)(6).

The key fact is that that every permutation of [n − 1] into exactly k cycles arises in n − 1 ways from
this process, because given a permeation of [n − 1] into exactly k cycles, we can insert n into the
permutation after any of the numbers in cycle notation. Therefore, the number of permutations of [n]
with exactly k cycles in which n does not form a 1-cycle by itself equals (n− 1) · c(n− 1, k).

Since we have broken up the set of all permutations of [n] with exactly k cycles into the disjoint union of
two sets, it follows that c(n, k) = c(n− 1, k − 1) + (n− 1) · c(n− 1, k).

Using this recurrence, we can compute the following table of values:

c(n, k) 0 1 2 3 4 5 6 7

0 1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
2 0 1 1 0 0 0 0 0
3 0 2 3 1 0 0 0 0
4 0 6 11 6 1 0 0 0
5 0 24 50 35 10 1 0 0
6 0 120 274 225 85 15 1 0
7 0 720 1764 1624 735 175 21 1

The recurrence does indeed allow us to compute the values of c(n, k) quickly, but we need more work to
compute the permutations of a certain “cycle structure”. For example, suppose that we want to count how
many permutations of [20] that consist of four 2-cycles and three 4-cycles. Notice that this value will occur
as one summon in the term c(20, 7) (as will those permutations consisting of one 14-cycle and six 1-cycles,
etc.). To count this, we think as follows. Arrange the 20 elements of [20] in sequence without repetition, and
build a permutation from it represented in cycle notation by put the first two elements in a 2-cycle, then the
3rd and 4th elements in a 2-cycle, as well as the 5th and 6th, and 7th and 8th. Next, put the the 9th through
12th elements in a 4-cycle, and then the 13th through 16th, and 17th through 20th into four cycles as well.
For example, if we write out our 20 numbers as

5 19 3 11 16 17 1 9 7 12 2 4 10 14 18 8 13 6 15 20

then we view this as representing the permutation

(5 19)(3 11)(16 17)(1 9)(7 12 2 4)(10 14 18 8)(13 6 15 20)

Notice that every permutation of [20] with four 2-cycles and three 4-cycles can be written with the four
2-cycles in the front (because we can always reorder the cycles), so we do get every permutation we are
looking for in this way. However, this is a lot of overcount in this method. Notice that in each of the four

78



2-cycles in front, we can swap the order of the two 2 entries without changing the permutation. Thus, we
get an overcount of 24 with these swappings. Furthermore, for each of the three 4-cycles, we can cyclically
shift them in 4 ways without changing the actual permutation, so we get an overcount of 43 here. Finally,
notice that we can rearrange the four 2-cycles up front in 4! ways, and also rearrange the three 4-cycles in
3! ways, without affecting the underlying permutation. It follows that the number of permutations of [20]
that consist of four 2-cycles and three 4-cycles equals.

20!

24 · 4! · 43 · 3!
.

Definition 3.49. Let σ be a permutation of [n]. An inversion of σ is an ordered pair (i, j) with i < j but
σ(i) > σ(j). We let Inv(σ) be the set of all inversions of σ.

For example, consider the following permutations in one-line notation:

σ = 312546 τ = 315246 π = 342516

In two-line notation, these are:

σ =

(
1 2 3 4 5 6
3 1 2 5 4 6

)
τ =

(
1 2 3 4 5 6
3 1 5 2 4 6

)
π =

(
1 2 3 4 5 6
3 4 2 5 1 6

)
while in cycle notation, these are

σ = (1 3 2)(4 5)(6) τ = (1 3 5 4 2)(6) π = (1 3 2 4 5)(6)

Notice that τ and π are obtained by swapping just two elements in the one-line notation, i.e. by swapping
two elements in the bottom row of the two-line notation. In terms of functions, τ and π are obtained by
composing σ with a permutation consisting of one 2-cycle and four 1-cycles: we have σ = π◦(3 4)(1)(2)(5)(6)
and τ = π ◦ (2 5)(1)(3)(4)(6).

We now examine the inversions in each of these permutations. Notice that it is typically easier to
determine these in first representations rather than in cycle notation:

Inv(σ) = {(1, 2), (1, 3), (4, 5)}
Inv(τ) = {(1, 2), (1, 4), (3, 4), (3, 5)}
Inv(π) = {(1, 3), (1, 5), (2, 3), (2, 5), (3, 5), (4, 5)}

From this example, it may seem puzzling to see how the inversions are related. However, there is something
quite interesting that is happening. Let’s examine the relationship between Inv(σ) and Inv(τ). By swapping
the third and fourth positions in the second row, the inversion (1, 3) in σ became the inversion (1, 4) in τ ,
and the inversion (4, 5) in σ became the inversion (3, 5) in τ , so those match up. However, we added a new
inversion by this swap, because although originally we had σ(3) < σ(4), but the swapping made τ(3) > τ(4).
This accounts for the one additional inversion in τ . If instead we had σ(3) > σ(4), then this swap would
have lost an inversion. However, in either case, this example illustrates that a swapping of two adjacent
numbers either increases or decreases the number of inversions by 1.

Lemma 3.50. Suppose that σ is a permutation of [n], and suppose τ is obtained from σ by swapping two
adjacent entries in the one-line notation of σ. In other words, suppose that there is a k with 1 ≤ k < n such
that

τ(i) =


σ(i) if i 6= k and i 6= k + 1

σ(k + 1) if i = k

σ(k) if i = k + 1

We then have that |Inv(σ)| and |Inv(τ)| differ by 1.
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Proof. Suppose that τ is obtained from σ by swapping the entries k and k+1. Notice that if i, j /∈ {k, k+1},
then

(i, j) ∈ Inv(σ)⇐⇒ (i, j) ∈ Inv(τ)

Now given any i with i < k, we have

(i, k) ∈ Inv(σ)⇐⇒ (i, k + 1) ∈ Inv(τ)

(i, k + 1) ∈ Inv(σ)⇐⇒ (i, k) ∈ Inv(τ)

Similarly, given any j with j > k + 1, we have

(k, j) ∈ Inv(σ)⇐⇒ (k + 1, j) ∈ Inv(τ)

(k + 1, j) ∈ Inv(σ)⇐⇒ (k, j) ∈ Inv(τ)

The final thing to notice is that

(k, k + 1) ∈ Inv(σ)⇐⇒ (k, k + 1) /∈ Inv(τ)

because if σ(k) > σ(k + 1) then τ(k) < τ(k + 1), while if σ(k) < τ(k + 1) then τ(k) > τ(k + 1). Since we
have a bijection between Inv(σ)\{(k, k + 1)} and Inv(τ)\{(k, k + 1)}, while (k, k + 1) is exactly one of the
sets Inv(σ) and Inv(τ), it follows that |Inv(σ)| and |Inv(τ)| differ by 1.

A similar analysis is more difficult to perform on π because the swapping involved two non-adjacent
numbers. As a result, elements in the middle had slightly more complicated interactions, and the above
example shows that a swap of this type can sizably increase the number of inversions. Although it is possible
to handle it directly, the key idea is to realize we can perform this swap through a sequence of adjacent
swaps. This leads to the following result.

Corollary 3.51. Suppose that σ is a permutation of [n], and suppose τ is obtained from σ by swapping
two entries in the one-line notation of σ. We then have that |Inv(σ)| and |Inv(τ)| have different parities,
i.e. one is even while the other is odd.

Proof. Suppose that τ is obtained from σ by swapping positions k and `, where k < `. We can assume that
` ≥ k + 2 because otherwise |Inv(σ)| and |Inv(τ)| differ by 1 and we are done. The key fact is that we can
obtain this swap by performing an odd number of adjacent swaps. To see this, start by swapping k and
k + 1, then k + 1 and k + 2, then k + 2 and k + 3, etc. until we end by swapping ` − 1 and `. Notice that
there are `− k many swaps here, and we end by shifting the entries in positions k + 1 through ` by one to
the left, and moving the entry in position k to the entry in position `. Now we swap positions ` − 2 and
`− 1, then `− 3 and `− 2, etc. until we end by swapping k and k+ 1. Notice that there are `− k− 1 many
swaps here, and in the final product we have swapped the entries in positions k and ` of σ and left the rest
in place. We have a total of 2k + 2` − 1 = 2(k + `) − 1 many swaps. Now Lemma 3.50 says each of these
adjacent swaps changes the number of inversions by 1 (either increasing or decreasing by 1), so each of these
inversions changes the parity of the number inversions. Since there are an odd number of such swaps, we
conclude that |Inv(σ)| and |Inv(τ)| have different parities.

3.6 Polynomial Coefficients

Definition 3.52. Given a polynomial p(x) = anx
n + an−1x

n−1 + · · · + a1x + a0 with an 6= 0, we define
deg(p(x)) = n. We leave deg(0) undefined.

For example, we have deg(x2 + 5x− 1) = 2 and deg(5) = 0. Notice that

deg(p(x)q(x)) = deg(p(x)) + deg(q(x))

for all nonzero polynomial p(x) and q(x), and this is one of the reasons why we leave deg(0) undefined. A
fundamental fact about polynomials is the following.
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Fact 3.53. A polynomial of degree n has at most n roots.

You will see a proof of this result in Abstract Algebra. Essentially, the key idea is that if a is a root of
a polynomial p(x), then it is possible to factor out x− a from p(x). Notice also that this is another reason
why we leave deg(0) undefined, because every element of R is a root of the zero polynomial. Furthermore,
from this fact, we obtain the following result.

Proposition 3.54. Let p(x) = anx
n+an−1x

n−1+ · · ·+a1x+a0 and q(x) = bnx
n+bn−1x

n−1+ · · ·+b1x+a0
be polynomials of degree at most n. Suppose that p(c) = q(c) for at least n + 1 many c ∈ R. We then have
that ai = bi for all i, so p(x) and q(x) are equal polynomials (and hence agree on all possible inputs).

Proof. Consider the polynomial

p(x)− q(x) = (an − bn)xn + (an−1 − bn−1)xn−1 + · · ·+ (a1 − b1)x+ (a0 − b0)

Notice that this polynomial has degree at most n but has at least n+ 1 many roots (because if c ∈ R is such
that p(c) = q(c), then c is a root of p(x)− q(x)). Since a polynomial of degree n has at most n roots, this is
only possible if p(x) − q(x) is the zero polynomial, i.e. if ai − bi = 0 for all i. We conclude that ai = bi for
all i.

Since deg(p(x)q(x)) = deg(p(x)) + deg(q(x)) for all nonzero polynomial p(x) and q(x), it follows that
deg((x + 1)n) = n for all n ∈ N. The Binomial Theorem tells us what the coefficients of the resulting
polynomial are:

(x+ 1)n =

n∑
k=0

(
n

k

)
xk

In other words, if we expand out
(x+ 1)(x+ 1)(x+ 1) · · · (x+ 1)

and collect terms to form a polynomial of degree n, then the coefficient of xk in the result is
(
n
k

)
. We next

work to determine the coefficients of slightly more complicated polynomials.

Definition 3.55. Given n ∈ N+, we define the following two polynomials:

• xn = x(x+ 1)(x+ 2) · · · (x+ n− 1)

• xn = x(x− 1)(x− 2) · · · (x− n+ 1)

We also define x0 = 1 = x0. Notice that deg(xn) = n = deg(xn) for all n ∈ N.

For example, we have the following:

• x0 = 1

• x1 = x = 0 + x

• x2 = x(x+ 1) = 0 + x+ x2

• x3 = x(x+ 1)(x+ 2) = 0 + 2x+ 3x2 + x3

• x4 = x(x+ 1)(x+ 2)(x+ 3) = 0 + 6x+ 11x2 + 6x3 + x4

and also:

• x0 = 1

• x1 = x = 0 + x
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• x2 = x(x− 1) = 0− x+ x2

• x3 = x(x− 1)(x− 2) = 0 + 2x− 3x2 + x3

• x4 = x(x− 1)(x− 2)(x− 3) = 0− 6x+ 11x2 − 6x3 + x4

Theorem 3.56. For every n ∈ N, we have

xn =

n∑
k=0

c(n, k) · xk

Proof. We prove the result by induction on n ∈ N.

• Base Cases: We prove the result for n = 0 and n = 1 (we will need two base cases because we assume
n ≥ 1 in Theorem 3.48).

– When n = 0, we have

x0 = 1

= c(0, 0)

= c(0, 0) · x0

=

0∑
k=0

c(n, k) · xk

– When n = 1, we have

x1 = 0 + 1x

= c(1, 0) · x0 + c(1, 1) · x1

=

1∑
k=0

c(n, k)xk

Thus, the statement is true when n = 0 and n = 1.

• Inductive Step: Let n ∈ N+ be arbitrary and assume that the statement is true for n, i.e. assume that

xn =

n∑
k=0

c(n, k) · xk

Using the fact that c(n, 0) = 0 = c(n + 1, 0) and c(n, n) = 1 = c(n + 1, n + 1), along with Theorem
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3.48, we then have

xn+1 = xn(x+ n)

=

(
n∑

k=0

c(n, k) · xk
)
· (x+ n)

= x ·

(
n∑

k=0

c(n, k) · xk
)

+ n ·

(
n∑

k=0

c(n, k) · xk
)

=

(
n∑

k=0

c(n, k) · xk+1

)
+

(
n∑

k=0

n · c(n, k) · xk
)

=

(
n+1∑
k=1

c(n, k − 1) · xk
)

+

(
n∑

k=1

n · c(n, k) · xk
)

=

(
n∑

k=1

c(n, k − 1) · xk
)

+ c(n, n) · xn+1 +

(
n∑

k=1

n · c(n, k) · xk
)

= 0 · x0 +

(
n∑

k=1

[c(n, k − 1) + n · c(n, k)] · xk
)

+ c(n, n) · xn+1

= c(n+ 1, 0) · x0 +

(
n∑

k=1

c(n+ 1, k) · xk
)

+ c(n+ 1, n+ 1) · xn+1

=

n+1∑
k=0

c(n+ 1, k) · xk

Thus, the statement is true for n+ 1.

The result follows by induction.

Definition 3.57. Let k, n ∈ N. We define

s(n, k) = (−1)n+kc(n, k) = (−1)n+k

[
n

k

]
.

and call s(n, k) the (signed) Stirling numbers of the first kind.

Notice that s(0, 0) = 1, s(n, 0) = 0 if n ≥ 1, and s(n, k) = 0 if k > n because the same are true of c(n, k)
by definition.

Corollary 3.58. For every n ∈ N+, we have

xn =

n∑
k=0

s(n, k) · xk

Proof. One can prove this by induction as in the previous theorem, but there is another more clever method.
Let n ∈ N+ be arbitrary. We know from the previous theorem that

x(x+ 1)(x+ 2) · · · (x+ (n− 1)) =

n∑
k=0

c(n, k) · xk.
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Since this is a polynomial equality, we can plug in any real value to obtain an equality of real numbers.
Thus, for any a ∈ R, we can plug −a into the above polynomials to conclude that

(−a)((−a) + 1)((−a) + 2) · · · ((−a) + (n− 1)) =

n∑
k=0

c(n, k) · (−a)k,

which implies that

(−1)n · a(a− 1)(a− 2) · · · (a− (n− 1)) =

n∑
k=0

(−1)kc(n, k) · ak

Multiplying both sides by (−1)n it follows that

a(a− 1)(a− 2) · · · (a− (n− 1)) =

n∑
k=0

(−1)n+kc(n, k) · ak

and hence

a(a− 1)(a− 2) · · · (a− (n− 1)) =

n∑
k=0

s(n, k) · ak

is true for all a ∈ R. Since the polynomials xn = x(x− 1)(x− 2) · · · (x− (n− 1)) and
∑n

k=0 s(n, k) · xk agree
for all real numbers, we may use Proposition 3.54 to conclude that

xn =

n∑
k=0

s(n, k) · xk.

This completes the proof.

We can interpret our two polynomial equalities in the following way. Let n ∈ N+ and consider the
vector space V of all polynomials of degree at most n (as well as the zero polynomial). We know that
{x0, x1, x2, . . . , xn} is a basis for V . For each ` ∈ N with 0 ≤ ` ≤ n, we have

x` =
∑̀
k=0

c(`, k) · xk

and

x` =
∑̀
k=0

s(`, k) · xk

so the (unsigned/signed) Stirling numbers of the first kind show to express x` ∈ V and x` ∈ V as linear
combinations of the standard basis vectors in {x0, x1, x2, . . . , xn}. Can we reverse this process? In other
words, can we express 1, x, x2, . . . , xn in terms of the vectors {x0, x1, x2, . . . , xn}? If this latter set is a basis
for V , then this is indeed possible. One can show directly that {x0, x1, x2, . . . , xn} is a linearly independent
set of size n + 1, so it must be a basis. Hence, it is at least theoretically possible. However, we can prove
directly that is possible along with determining the coefficients with little work at this point.

Theorem 3.59. For every n ∈ N, we have

xn =

n∑
k=0

S(n, k) · xk
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Proof. When n = 0, we have x0 = 1 and

0∑
k=0

S(n, k) · xk = S(0, 0) · x0

= 1 · x0

= 1

as well, so the statement is true in this case. Suppose now that n ≥ 1. Recall that Theorem 3.27 tells us
that

mn =

n∑
k=1

k! · S(n, k) ·
(
m

k

)
for all m ∈ N+ (because both sides count the number of functions from [n] to [m]). Therefore, for any
m ∈ N+, we have

mn =

n∑
k=1

k! · S(n, k) ·
(
m

k

)

=

n∑
k=1

k! · S(n, k) · m!

k! · (m− k)!

=

n∑
k=1

S(n, k) · m!

(m− k)!

=

n∑
k=1

S(n, k) ·m(m− 1)(m− 2) · · · (m− k + 1)

=

n∑
k=0

S(n, k) ·m(m− 1)(m− 2) · · · (m− k + 1)

where the last line follows from the fact that S(n, 0) = 0. Thus, the polynomial xn and the polynomial

n∑
k=0

S(n, k) · xk

agree at every natural number m. Since these two polynomials have degree at most n and agree at infinitely
many points, we may use Proposition 3.54 to conclude that

xn =

n∑
k=0

S(n, k) · xk

This completes the proof.

We now know that

x` =
∑̀
k=0

s(`, k) · xk

and

x` =
∑̀
k=0

S(`, k) · xk
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for all ` ∈ N. Let’s return to the above setting, i.e. let n ∈ N+ and consider the vector space V of all
polynomials of degree at most n (as well as the zero polynomial). Since {x0, x1, x2, . . . , xn} is a basis for
V , and we’ve just seen that each x` is in the span of {x0, x1, x2, . . . , xn}, it follows that {x0, x1, x2, . . . , xn}
spans V . Since this is a spanning set of n + 1 many vectors, it follows that this set is also basis of V .
Furthermore, the above equalities show that the Stirling numbers give the change of basis matrices between
these two bases. Thus, if we cut off the Stirling matrices S(n, k) and s(n, k) at some finite point, then the
matrices must be inverses of each other.

S(n, k) 0 1 2 3 4 5 6 7

0 1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
2 0 1 1 0 0 0 0 0
3 0 1 3 1 0 0 0 0
4 0 1 7 6 1 0 0 0
5 0 1 15 25 10 1 0 0
6 0 1 31 90 65 15 1 0
7 0 1 63 301 350 140 21 1

s(n, k) 0 1 2 3 4 5 6 7

0 1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
2 0 -1 1 0 0 0 0 0
3 0 2 -3 1 0 0 0 0
4 0 -6 11 -6 1 0 0 0
5 0 24 -50 35 -10 1 0 0
6 0 -120 274 -225 85 -15 1 0
7 0 720 -1764 1624 -735 175 -21 1

Alternatively, instead of appealing to linear algebra, we can also determine this inverse relationship
directly. For any n ∈ N, we have

xn =

n∑
`=0

S(n, `) · x`

=

n∑
`=0

[S(n, `) · (
∑̀
k=0

s(`, k) · xk)]

=

n∑
`=0

∑̀
k=0

[S(n, `) · s(`, k) · xk]

=

n∑
`=0

n∑
k=0

[S(n, `) · s(`, k) · xk]

=

n∑
k=0

n∑
`=0

[S(n, `) · s(`, k) · xk]

=

n∑
k=0

[

n∑
`=0

S(n, `) · s(`, k)] · xk

Therefore
n∑

`=0

S(n, `) · s(`, k) =

{
1 if n = k

0 if n 6= k
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Similarly, we have
n∑

`=0

s(n, `) · S(`, k) =

{
1 if n = k

0 if n 6= k

In other words, the Stirling matrices S(n, k) and s(n, k) are inverses of each other.
Notice that we do not even need to cut off the matrices at some point to be n×n matrices (the fact that

every row is eventually zero means the the matrix products make sense even for infinite matrices). In linear
algebra terminology, the sets {x0, x1, x2, . . . } and {x0, x1, x2, . . . } are both bases for the infinite-dimensional
vector space of all polynomials (without degree restrictions), and the matrices S(n, k) and s(n, k) form the
change of basis matrices for these two bases.

3.7 Countability and Uncountability

Recall that given finite sets A and B, if there exists a bijection f : A → B, then |A| = |B|. Moreover, it’s
not hard to see that the converse of this is true is well, i.e. if A and B are finite sets with |A| = |B|, then
there exists a bijection f : A → B (to see this, assume that |A| = n = |B|, list A = {a1, a2, . . . , an} and
B = {b1, b2, . . . , bn}, and then define a bijection by letting f(ai) = bi for all i). Now if A and B are infinite
sets, then we have no obvious way to define the cardinality of A and B like we do for finite sets. However,
it still makes sense to talk about bijections, and so one can simply define two (possibly infinite) sets A and
B to have the same size if there is a bijection f : A→ B.

With this in mind, think about N = {0, 1, 2, 3, . . . } and the subset N+ = {1, 2, 3, 4, . . . }. Although N+ is
a proper subset of N and “obviously” has one fewer element, the function f : N→ N+ given by f(n) = n+ 1
is a bijection, and so N and N+ have the same “size”. For another even more surprising example, let
A = {2n : n ∈ N} = {0, 2, 4, 6, . . . } be the set even natural numbers, and notice that the function f : N→ A
given by f(n) = 2n is a bijection from N to A. Hence, even though A intuitively seems to only have “half”
of the elements of N, there is still a bijection between N and A.

The next proposition shows that N is the “smallest” infinite set.

Proposition 3.60. If A is an infinite set, then there is an injective function f : N→ A.

Proof. We define f : N→ A recursively. Pick an arbitrary a0 ∈ A, and define f(0) = a0. Suppose that n ∈ N
and we have defined the values f(0), f(1), . . . , f(n), all of which are elements of A. Since A is infinite, we
have that {f(0), f(1), . . . , f(n)} 6= A. Thus, we can pick an arbitrary an+1 ∈ A, and define f(n+ 1) = an+1.
With this recursive definition, we have defined a function f : N → A. Notice that if m < n, then f(n) was
chosen to be distinct from f(m) by definition, so f(m) 6= f(n). Therefore, f is injective.

With this in mind, we introduce a name for those infinite sets for which we can find a bijection with N,
and think of them as the “smallest” types of infinite sets.

Definition 3.61. Let A be a set.

• We say that A is countably infinite if there exists a bijection f : N→ A.

• We say that A is countable if it is either finite or countably infinite.

• If A is not countable, we say that A is uncountable.

Suppose that A is countably infinite. We then have a bijection f : N→ A, so we can arrange its elements
in a list without repetitions by listing out f(0), f(1), f(2), f(3), . . . to get:

a0 a1 a2 a3 · · ·

Conversely, writing out such a list without repetitions shows how to build a bijection f : N → A. Since
working with such lists is more intuitively natural (although perhaps a little less rigorous), we’ll work with
countable sets in this way. What about lists that allow repetitions?
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Proposition 3.62. Let A be a set. The following are equivalent.

1. It is possible to list A, possibly with repetitions, as a0, a1, a2, a3, . . . .

2. There is a surjection g : N→ A.

3. A is countable, i.e. either finite or countably infinite.

Proof. 1 ↔ 2: This is essentially the same as the argument just given. If we can list A, possibly with
repetitions, as a0, a1, a2, a3, . . . , then the function g : N→ A given by g(n) = an is a surjection. Conversely,
if there is a surjection g : N→ A, then g(0), g(1), g(2), g(3), . . . is a listing of A.

1→ 3: Suppose that there is a surjection g : N→ A. If A is finite, then A is countable by definition, so we
may assume that A is infinite. We define a new list as follows. Let b0 = a0. If we have defined b0, b1, . . . , bn,
let bn+1 = ak, where k is chosen as the least value such that ak /∈ {b0, b1, . . . , bn} (such a k exists because A
is infinite). Then

b0 b1 b2 b3 · · ·

is a listing of A without repetitions. Therefore, A is countably infinite.
3 → 1: Suppose that A is countable. If A is countably infinite, then there is a bijection f : N → A, in

which case
f(0) f(1) f(2) f(3) · · ·

is a listing of A (even without repetition). On the other hand, if A is finite, say A = {a0, a1, a2, . . . , an},
then

a0 a1 a2 · · · an an an · · ·

is a listing of A with repetitions.

Our first really interesting result is that Z, the set of integers, is countable. Of course, some insight is
required because if we simply start to list the integers as

0 1 2 3 4 · · ·

we won’t ever get to the negative numbers. We thus use the sneaky strategy of bouncing back-and-forth
between positive and negative integers.

Proposition 3.63. Z is countable.

Proof. We can list Z as
0 1 −1 2 −2 · · ·

More formally, we could define f : N→ Z by

f(n) =

{
−n

2 if n is even
n+1
2 if n is odd

and check that f is a bijection.

The key idea used in previous proof can be abstracted into the following result.

Proposition 3.64. If A and B are countable, then A ∪B is countable.
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Proof. Since A is countable, we may list it as a0, a1, a2, a3, . . . . Since B is countable, we may list it as
b0, b1, b2, b3, . . . . We therefore have the following two lists:

a0 a1 a2 a3 · · ·
b0 b1 b2 b3 · · ·

We can list A ∪B by going back-and-forth between the above lists as

a0 b0 a1 b1 a2 b2 · · ·

A slightly stronger result is now immediate.

Corollary 3.65. If A0, A1, . . . , An are countable, then A0 ∪A1 ∪ · · · ∪An is countable.

Proof. This follows from Proposition 3.64 by induction. Alternatively, we can argue as follows. For each
fixed k with 0 ≤ k ≤ n, we know that Ak is countable, so we may list it as ak,0, ak,1, ak,2, . . . . We can
visualize the situation with the following table.

a0,0 a0,1 a0,2 a0,3 · · ·
a1,0 a1,1 a1,2 a1,3 · · ·

...
...

...
...

. . .

an,0 an,1 an,2 an,3 · · ·

We now list A0 ∪A1 ∪ · · · ∪An by moving down each column in order, to obtain:

a0,0 a1,0 · · · an,0 a0,1 a1,1 · · · an,1 · · · · · ·

In fact, we can prove quite a significant extension of the above results. The next proposition is usually
referred to by saying that “the countable union of countable sets is countable”.

Proposition 3.66. If A0, A1, A2, . . . are all countable, then
∞⋃
k=0

Ak = A0 ∪A1 ∪A2 ∪ · · · is countable.

Proof. For each n ∈ N, we know that An is countable, so we may list it as ak,0, ak,1, ak,2, ak,3, . . . . We now
have the following table.

a0,0 a0,1 a0,2 a0,3 · · ·
a1,0 a1,1 a1,2 a1,3 · · ·
a2,0 a2,1 a2,2 a2,3 · · ·
a3,0 a3,1 a3,2 a3,3 · · ·

...
...

...
...

. . .

Now we can’t list this by blindly walking down the rows or columns. We thus need a new, much more
clever, strategy. The idea is to list the elements of the table by moving between rows and columns. One nice

approach which works is to step along certain diagonals and obtain the following listing of
∞⋃

n=0
An:

a0,0 a0,1 a1,0 a0,2 a1,1 a2,0 · · ·

The pattern here is that we are walking along the diagonals in turn, each of which is finite. Alternatively,
we can describe this list as follows. For each m ∈ N, there are only finitely many pairs (i, j) ∈ N × N with
i + j = m. We first list the finitely many ai,j with i + j = 0, followed by those finitely many ai,j with

i+ j = 1, then those finitely many ai,j with i+ j = 2, etc. This gives a listing of
∞⋃
k=0

Ak.
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Theorem 3.67. Q is countable.

Proof. For each k ∈ N+, let Ak = {ak : a ∈ Z}. Notice that each Ak is countable because we can list it as

0
k

1
k

−1
k

2
k

−2
k . . .

Since

Q =

∞⋃
k=1

Ak = A1 ∪A2 ∪A3 ∪ · · ·

we can use Proposition 3.66 to conclude that Q is countable.

With all of this in hand, it is natural to ask whether uncountable sets exist.

Theorem 3.68. R is uncountable.

Proof. We need to show that there is no list of real numbers that includes every element of R. Suppose then
that r1, r2, r3, . . . is an arbitrary list of real numbers. We show that there exists x ∈ R with x 6= rn for every
n ∈ N. For each n ∈ N, we write out the (nonterminating) decimal expansion of rn as

an . dn,1 dn,2 dn,3 dn,4 · · ·

where an ∈ Z and each dn,i ∈ Z satisfies 0 ≤ dn,i ≤ 9. We arrange our list of reals r1, r2, r3, . . . as a table

a1 . d1,1 d1,2 d1,3 d1,4 · · ·
a2 . d2,1 d2,2 d2,3 d2,4 · · ·
a3 . d3,1 d3,2 d3,3 d3,4 · · ·
a4 . d4,1 d4,2 d4,3 d4,4 · · ·
...

...
...

...
...

...
. . .

For each n ∈ N, let

en =

{
3 if dn,n 6= 3

7 if dn,n = 3

Let x be the real number with decimal expansion

. e1 e2 e3 e4 · · ·

We claim that x 6= rn for every n ∈ N. Let n ∈ N be arbitrary. Since en 6= dn,n by construction, it follows x
and rn disagree in the nth decimal position. Therefore, since the (nonterminating) decimal expansions of x
and rn are different, it follows that x 6= rn.
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4 Graph Theory

4.1 Graphs, Multigraphs, Representations, and Subgraphs

Definition 4.1. A graph G is a pair (V,E) of sets such that:

• V is a nonempty set.

• E is a (possibly empty) set such that each element is subset of V of cardinality 2. In other words,
E ⊆ P2(V ).

Elements of V are called vertices, and elements of E are called edges. We say that G is finite if V is finite
(in which case E must be finite as well).

For example, if we let

V = {1, 2, 3, 4, 5}
E = {{1, 2}, {1, 3}, {1, 5}, {3, 5}},

then G = (V,E) is a graph.

Definition 4.2. Let G = (V,E) be a graph.

• Given an edge e ∈ E, we call the elements of e the endpoints of e, and we say that e is incident to
these vertices.

• If u,w ∈ V and {u,w} ∈ E, then we say that u and w are adjacent or linked.

We can also view graphs as certain types of relations. Recall that a relation on a set V is a subset of V 2,
i.e. a set of ordered pairs, while edges in a graph are sets with 2 elements. However, if we consider symmetric
relations, then we kind of “ignore” the fact that edges are unordered because whenever we have the ordered
pair (u,w) we also have the ordered pair (w, u). We need one other condition as well.

Definition 4.3. A relation R on a set A is irreflexive if (a, a) /∈ R for all a ∈ A.

Notice that irreflexive does not mean “not reflexive” (if (a, a) ∈ R some a ∈ A and (a, a) /∈ R for some
other a ∈ A, then the relation is neither reflexive nor irreflexive). From this point of view, a graph can be
described as a nonempty set V together with a relation on V that is symmetric and irreflexive. For example,
we can interpret the above graph as follows:

V = {1, 2, 3, 4, 5}
R = {(1, 2), (2, 1), (1, 3), (3, 1), (1, 5), (5, 1), (3, 5), (5, 3)}

Definition 4.4. Let G be a finite graph with n vertices v1, v2, . . . , vn listed in some order. We define an
n× n matrix A called the adjacency matrix of G by letting

ai,j =

{
1 if vi is adjacent to vj

0 otherwise

For the above example with vertices listed in order 1, 2, 3, 4, 5, we have the adjacency matrix

A =


0 1 1 0 1
1 0 0 0 0
1 0 0 0 1
0 0 0 0 0
1 0 1 0 0
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If we change the order of the vertices to be 4, 3, 5, 2, 1, the we have the adjacency matrix

A =


0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 0 0 0 1
0 1 1 1 0


Notice that the adjacency matrix A of any finite graph is symmetric (i.e. ai,j = aj,i for all i and j, or
alternatively A is equal to its transpose), has each entry equal to either 0 or 1, and has all diagonal entries
equal to 0. Furthermore, it’s not hard to see that every matrix with these properties arises as the adjacency
matrix of some finite graph.

Definition 4.5. Let G be a finite graph with n vertices v1, v2, . . . , vn and m edges e1, e2, . . . , em each listed
in some order. We define an n×m matrix B called the incidence matrix of G by letting

bi,j =

{
1 if vi is an endpoint of ej

0 otherwise

For the above example with vertices listed in order 1, 2, 3, 4, 5 and edges as {1, 2}, {1, 3}, {1, 5}, {3, 5}, we
have the incidence matrix

B =


1 1 1 0
1 0 0 0
0 1 0 1
0 0 0 0
0 0 1 1


Notice that incidence matrix has each entry equal to either 0 or 1, and has exactly two 1’s in each column.
Furthermore, it’s not hard to see that every matrix with these properties arises as the incidence matrix of
some graph.

Definition 4.6. We define the following graphs.

• For each n ∈ N+, let Kn be the graph with vertex set V = [n] and edge set

E = {{i, j} : 1 ≤ i ≤ n, 1 ≤ j ≤ n, and i 6= j}

equal to the set of all subsets of V of cardinality 2, i.e. every pair of distinct vertices are linked. We
call Kn the complete graph on n vertices.

• For each n ∈ N+, let Pn be the graph with vertex set V = [n] and edge set

E = {{i, i+ 1} : 1 ≤ i ≤ n− 1}.

We call Pn the path graph on n vertices.

• For each n ∈ N+ with n ≥ 3, let Cn be the graph with vertex set V = [n] and edge set

E = {{i, i+ 1} : 1 ≤ i ≤ n− 1} ∪ {{1, n}}.

We call Cn the cycle graph on n vertices.

• For each m,n ∈ N+, let Km,n be the graph with vertex set V = [m+ n] and edge set

E = {{i, j} : 1 ≤ i ≤ m and m+ 1 ≤ j ≤ n}.

We call Km,n a complete bipartite graph.
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In our definition of a graph, given any two vertices, either they are linked by one edge or they are not.
Also, in a graph, edges always have two distinct endpoints, so there are no “loops”. By relaxing these
conditions, we define a broader class of objects that we’ll call multigraphs. Since two distinct vertices can
have many different edges linking them in this context, the definition is more involved.

Definition 4.7. A multigraph G is a triple (V,E, f) of sets such that:

• V is a nonempty set.

• E is a set disjoint from V .

• f is function with domain E such that f(e) is a subset of V or cardinality either 1 or 2 for each e ∈ E.
In other words, f : E → P1(V ) ∪ P2(V ).

Elements of V are called vertices, and elements of E are called edges. We say that G is finite if both V and
E are finite (notice that it possible that V is finite but E is infinite).

Definition 4.8. Let G = (V,E, f) be a multigraph.

• Given an edge e ∈ E, we call the elements of f(e) the endpoints of e, and we say that e is incident to
these vertices.

• If u,w ∈ V and there is an edge e ∈ E with f(e) = {u,w}, then we say that u and w are adjacent or
linked.

• We call an edge e ∈ E a loop if f(e) has only 1 element (i.e. if e has only 1 endpoint).

For example, let

V = {1, 2, 3}
E = {a, b, c, d, e}

and define f by letting:

• f(a) = {1, 2}.

• f(b) = {1, 3}

• f(c) = {3}

• f(d) = {1, 2}

• f(e) = {1, 2}

We then have that G = (V,E, f) is a graph. Intuitively, we can think of this graph as follows. There are
three vertices labeled 1, 2, and 3. We have one edge linking vertices 1 and 3, three edges linking vertices 1
and 2, and one edge that is a loop at vertex 3 (so both of its endpoints are vertex 3).

Although the definitions of graphs and multigraphs are fundamentally different, we can interpret every
graph as a multigraph. For example, recall our graph

V = {1, 2, 3, 4, 5}
E = {{1, 2}, {1, 3}, {1, 5}, {3, 5}},

We can interpret this as a mutligraph by letting keeping V , letting E′ = {e1, e2, e3, e4}, and define f by

• f(e1) = {1, 2}
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• f(e2) = {1, 3}

• f(e3) = {1, 5}

• f(e4) = {3, 5}

Alternatively, and much more simply, we can keep both V and E, and just let f : E → P2(V ) be the function
where f(e) = e (since, after all, in a graph an element of E is a subset of V of cardinality 2). This always
works as long as V and E are disjoint.

One can define analogues of the adjacency and incidence matrices for multigraphs, but there there is not
a standard way to deal with loops.

• If G is a finite multigraph, and we’ve listed the vertices in order as v1, v2, . . . , vn, then we define the
n × n adjacency matrix A as follows. If i 6= j, let ai,j be the number of edges with endpoints vi and
vj . For the diagonal entries, it is natural to let ai,i be the number of loops at vi, but there is also a
strong argument for letting ai,i be twice the number of loops at vi (so we’re counting the endpoint as
having “multiplicity” 2).

• If G is a finite multigraph, and we’ve listed the vertices and edges in order as v1, v2, . . . , vn and
e1, e2, . . . , em, then we define the n×m incidence matrix B as follows. If ej is not a loop, let

bi,j =

{
1 if vi is an endpoint of ej

0 otherwise

as in the case for graphs. If ej is a loop with single endpoint vi, then we define bk,j = 0 for all k 6= i,
and we let bi,j equal either 1 or 2, depending on our preference (as in the adjacency matrix case).

Since we won’t be dealing with adjacency and incidence matrices of multigraphs very often, we’ll just stipulate
which version we are using

Definition 4.9. Let G be a multigraph and let v ∈ V . The degree of v, denoted by d(v), is the number of
edges incident to v, where each loop incident to v is counted twice.

Proposition 4.10. If G is a finite multigraph with m edges, then∑
v∈V

d(v) = 2m

Proof. Every edge has two endpoints (if we count the unique endpoint of any loop twice), so contributes 2
to the sum on the left hand-side. The result follows.

Corollary 4.11. A finite multigraph has an even number of vertices of odd degree.

Proof. Let G be a finite multigraph with m edges. Proposition 4.10 tells us that∑
v∈V

d(v) = 2m,

so ∑
v∈V

d(v)

is even. If there were odd number of vertices of odd degree, then this sum would be odd, which is a
contradiction.
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Definition 4.12. Let G = (VG, EG) and H = (VH , EH) be graphs. We say that H is a subgraph of G if
VH ⊆ VG and EH ⊆ EG.

Definition 4.13. Let G = (V,E) be a graph.

• For any subset F ⊆ E, we let G−F be the subgraph of G with vertex set equal to V and edge set equal
to E\F . If F = {e}, we write G− e instead of G− {e}.

• For any subset U ⊆ V with U 6= V , we let G− U be the subgraph of G with vertex set V \U and edge
set equal to {e ∈ E : Both endpoints of e are elements of V \U}. If U = {u}, we write G− u instead
of G− {u}.

• For any subset U ⊆ V with U 6= ∅, we let G[U ] be the subgraph of G with vertex set U and edge set
equal to {e ∈ E : Both endpoints of e are elements of U}. Notice that G[U ] = G − (V/U). We call
G[U ] the subgraph of G induced by U .

Thus, G− F is obtained by deleting all of the edges in F , while G− U is obtained by deleting all of the
vertices in U as well as all edges incident to some vertex in U . Intuitively, an induced subgraph of G is one
obtained by only deleting vertices (and all of their associated edges), whereas a general subgraph of G is one
obtained by deleting vertices (and all of their associated edges) along with possibly deleting additional edges
whose endpoints are still alive. There can exist subgraphs of a graph G that are not induced subgraphs,
such as the result of deleting one edge.

Definition 4.14. Let G = (VG, EG, fG) and H = (VH , EH , fH) be multigraphs. We say that H is a
submultigraph of G if VH ⊆ VG, EH ⊆ EG, and fH is the restriction of fG to the set EH .

One can similarly define G− F , G− U , and G[U ] for multigraphs.

Definition 4.15. Let G1 = (V1, E1) and G2 = (V2, E2) be graphs. An isomorphism from G1 to G2 is a
bijection g : V1 → V2 such that for all u,w ∈ V1, we have that {u,w} ∈ E1 if and only if {u,w} ∈ E2.

For example, consider the following two graphs. Let G1 be the graph where

V1 = {1, 2, 3, 4, 5}
E1 = {{1, 2}, {1, 3}, {3, 4}, {3, 5}, {4, 5}}

and let G2 be the graph where

V2 = {a, b, c, d, e}
E2 = {{a, c}, {a, d}, {a, e}, {b, e}, {c, d}}

We then have that the function g : V1 → V2 defined by

g(1) = e

g(2) = b

g(3) = a

g(4) = c

g(5) = d

is an isomorphism.

Definition 4.16. Given two graphs G1 = (V1, E1) and G2 = (V2, E2), we say that G1 is isomorphic to G2,
and write G1

∼= G2, if there exists an isomorphism from G1 to G2.
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Intuitively, two graphs G1 and G2 are isomorphic when only can relabel the names of the vertices so that
the graphs look the same, and the function g is precisely the “translation” between the names of the vertices
on each side. In terms of pictures, saying that G1

∼= G2 is the same as saying that it is possible to draw the
graphs in identical fashions, provided we can place the vertices anywhere that we would like.

Definition 4.17. Let G1 and G2 be multigraphs. An isomorphism is a pair of bijections g : V1 → V2 and
h : E1 → E2 such that for all e ∈ E1, if f1(e) = {u,w}, then f2(h(e)) = {g(u), g(w)}, and if f1(e) = {v},
then f2(h(e)) = {g(v)}

4.2 Walks, Paths, Cycles, and Connected Components

Definition 4.18. Let G = (V,E, f) be a multigraph.

• A walk in G is a sequence v0, e1, v1, e2, v2, . . . , vk−1, ek, vk where each vi ∈ V , each ei ∈ E, and where
f(ei) = {vi−1, vi} for all i (i.e. the endpoints of ei are vi−1 and vi). We allow walks to consists of a
single vertex v0 and no edges.

• A trail in G is a walk with no repeated edges, i.e. where ei 6= ej whenever i 6= j.

• A path in G is a walk with no repeated vertices, i.e. where vi 6= vj whenever i 6= j.

• A closed walk in G is a walk is a walk where v0 = vk. Similarly, a closed trail is a trail where v0 = vk.

• A u,w-walk in G is a walk with v0 = u and vk = w (similarly for a u,w-trail and a u,w-path).

Definition 4.19. Let G be a multigraph. Given a walk in G, we define the length of the walk to be the
number of edges it contains, counting repetition. In other words, the length of the walk

v0, e1, v1, e2, v2, . . . , vk−1, ek, vk

is k (which is one less than the number of vertices).

Proposition 4.20. Let G be a multigraph.

• Every path in G is a trail.

• Every trail in G is a walk.

Proof. Clearly every trail in G is a walk because a trail is by definition a walk. We need to prove that every
path in G is a trail. Suppose then that

v0, e1, v1, e2, v2, . . . , vk−1, ek, vk

is a path in G. We need to show that this is a trail, so suppose for the sake of obtaining a contradiction that
ei = ej where i < j. Since ei = ej , we have that ei and ej have the same endpoints, which is to say that
{vi−1, vi} = {vj−1, vj}. It follows that either vi−1 = vj−1 or vi−1 = vj . Since i− 1 < i ≤ j− 1, in either case
we have violated the definition of a path because we have found a repeated vertex. This is a contradiction,
so our path must be a trail.

Proposition 4.21. Let G be a multigraph and let u,w ∈ G. The following are equivalent.

1. There is a u,w-walk in G.

2. There is a u,w-trail in G.

3. There is a u,w-path in G.
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Proof. 3 → 2 → 1 are immediate from the previous proposition. We now prove that 1 → 3. Suppose that
there is a u,w-walk in G. Fix a u,w-walk in G of shortest possible length, say it is:

v0, e1, v1, . . . , vk−1, ek, vk

where v0 = u and vk = w. We argue that this walk is a u,w-path. Suppose for the sake of obtaining a
contradiction that some vertex is repeated, say vi = vj where i < j. We then have that

v0, e1, v1, . . . , vi−1, ei, vi, ej+1, vj+1, . . . vk−1, ek, vk

is a u,w-walk because vi = vj (so the set of endpoints of ej+1 equals {vj , vj+1} = {vi, vj+1}). Furthermore,
this walk has length

i+ (k − j) = k − (j − i) < k

Thus, we have produced a u,w-walk in G of shorter length, which is a contradiction. It follows that our
above u,w-walk is in fact a u,w-path in G.

Proposition 4.22. Let G be a multigraph. Define a relation ∼ on V by letting u ∼ w mean that there is a
u,w-walk in G. We then have that ∼ is an equivalence relation.

Proof. We check the properties.

• Reflexive: For any u ∈ V , we have that the single vertex u is a u, u-walk in G, so u ∼ u.

• Symmetric: Suppose that u ∼ w. Fix a u,w-walk, say it is:

u = v0, e1, v1, e2, v2, . . . , vk−1, ek, vk = w

We then have that
w = vk, ek, vk−1, . . . , v2, e2, v1, e1, v0 = u

is a w, u-walk in G, so w ∼ u.

• Suppose that u ∼ w and w ∼ y. Fix a u,w-walk

u = v0, e1, v1, e2, v2, . . . , vk−1, ek, vk = w

and a w, y-walk
w = x0, f1, x1, f2, x2, . . . , x`−1, f`, x` = y

We then have that

u = v0, e1, v1, . . . , vk−1, ek, vk = w = x0, f1, x1, . . . , x`−1, f`, x` = y

is a u, y-walk in G, so u ∼ y.

Definition 4.23. Let G be a multigraph and let ∼ be the above relation on V . We know from our gen-
eral theory of equivalence relations that the equivalence classes of ∼ are subsets of V that partition V . A
connecting component of G is a subgraph of G of the form G[U ] for some equivalence class U of ∼.

We know that each vertex of a multigraph G appears in a unique connected component of G because the
equivalence classes of ∼ partition V . We now show that the same is true for edges.

Proposition 4.24. Let G be a multigraph. Every edge of G appears in a unique connected component of G.
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Proof. Let e ∈ E be arbitrary. Let u and w be the endpoints of E. Since u, e, w is a u,w-walk in G, we
have u ∼ w. Thus, if we let U = u be the equivalence class of U , then u,w ∈ U , and hence e ∈ G[U ].
Furthermore, since the equivalence classes partition V , the vertices u and w are not in any other equivalence
class, and hence e is not an element of any other connected component.

Definition 4.25. A multigraph G is connected if it has one connected component. In other words, G is a
connected if there exists a u,w-walk in G for all u,w ∈ V .

Proposition 4.26. If G is a multigraph, then every connected component of G is a connected graph.

Proof. Let G be a multigraph, and let U ⊆ V be an equivalence class of ∼. Let u,w ∈ U be arbitrary. Since
u and w are elements of the same equivalence class, we have u ∼ w, and hence we can fix a u,w-walk

u = v0, e1, v1, e2, v2, . . . , vk−1, ek, vk = w

in G. Notice that for each i with 1 ≤ i ≤ k, we have that

v0, e1, v1, e2, v2, . . . , vi−1, ei, vi

is a walk in G, so u ∼ vi. It follows that vi ∈ U for all i with 1 ≤ i ≤ k. Now given any i with 2 ≤ i ≤ k, we
have that both vi−i ∈ U and vi ∈ U , so ei is an edge of G[U ]. It follows that the walk

u = v0, e1, v1, e2, v2, . . . , vk−1, ek, vk = w

is also a u,w-walk in G[U ]. We have shown that for any two vertices u,w ∈ U , there is a u,w-walk in G[U ],
so G[U ] is connected.

Proposition 4.27. Let G be a graph with vertices v1, v2, . . . , vn and let A be the adjacency matrix. For all
k ∈ N+, the (i, j) entry of the matrix Ak equals the number of vi, vj-walks in G.

Proof. We prove the result by induction on k.

• Base Case: Since

ai,j =

{
1 if vi is adjacent to vj

0 otherwise

and a walk of length 1 consists of a single edge, it follows that ai,j is the number of vi, vj-walks of
length 1 in G.

• Inductive Step: Suppose then that the result is true for k. Letting B = Ak, we then have that bi,j is
the number of vi, vj-walks of length k in G. Let C = Ak+1 = AkA = BA. Fix i and j, and let

L = {` ∈ [n] : v` is adjacent to vj}

We have

ci,j =

n∑
`=1

bi,`a`,j

=
∑
`∈L

bi,`a`,j (since a`,j = 0 if ` /∈ L)

=
∑
`∈L

bi,` (since a`,j = 1 if ` ∈ L)
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Now given any vi, vj-walk of length k + 1, the second to last vertex in the sequence must be a vertex
adjacent to vj , hence must equal v` for some ` ∈ L. Thus, since G is a graph (i.e. not a multigraph),
a vi, vj-walk of length k + 1 is completely and uniquely determined by choice of v` for some ` ∈ L
as the second to last vertex, together with a vi, v` walk of length k. By induction, adding up the
number of such walks amounts to calculating the last sum above. Therefore, ci,j is the is the number
of vi, vj-walks of length k + 1 in G. The result follows by induction.

Above, we defined the cycle graphs Cn for each n ∈ N+ with n ≥ 3 as follows. Given n ∈ N+ with n ≥ 3,
we let Cn be the graph with vertex set V = [n] and edge set

E = {{i, i+ 1} : 1 ≤ i ≤ n− 1} ∪ {{1, n}}.

For n = 1 and n = 2, we can also define multigraphs C1 and C2 as follows.

• C1 is the multigraph with vertex set [1] = {1} and one edge that is a loop at 1.

• C2 is the multigraph with vertex set [2] = {1, 2} and two edges, each of which have endpoints 1 and 2
(so there is one double edge).

Together together, the Cn for n ∈ N+ form the cycle (multi)graphs. We now define cycles within graphs.

Definition 4.28. Let G be a multigraph. A cycle in G is a submultigraph of G that is isomorphic to Cn for
some n ∈ N+.

Although cycles are certain subgraphs of G, we often find them by finding closed walks without repeated
vertices or edges.

Proposition 4.29. Let G be a multigraph.

1. Suppose that k ≥ 1 and that
v0, e1, v1, . . . , vk−1, ek, vk

is a closed walk in G without repeated edges and without repeated vertices other than v0 = vk (i.e. where
ei 6= ej whenever 1 ≤ i < j < k and vi 6= vj whenever 0 ≤ i < j < k). If we let U = {v0, v1, . . . , vk−1}
and F = {e1, e2, . . . , ek}, then H = (U,F ) is a submultigraph of G that is isomorphic to Ck, so
H = (U,F ) is a cycle.

2. Conversely, suppose that H = (U,F ) is a cycle of G. It is them possible to list the vertices of U as
v0, v1, . . . , vk−1 and list the edges of F as e1, e2, . . . , ek in such a way that

v0, e1, v1, . . . , vk−1, ek, vk

is a closed walk without repeated edges and without repeated vertices other than v0 = vk (i.e. where
ei 6= ej whenever 1 ≤ i < j < k and vi 6= vj whenever 0 ≤ i < j < k).

Proof. 1. We prove the result when k ≥ 3 (the cases for k = 1 and k = 2 are similar, but there we need
to treat Ck as a multigraph). Let

v0, e1, v1, . . . , vk−1, ek, vk

be a closed walk in G without repeated edges and without repeated vertices other than v0 = vk. Define
a function g : VCk

→ U by letting g(i) = vi for all i. Also, define a function h : ECk
→ F by letting

h({i, i + 1}) = ei for all i with 1 ≤ i ≤ k − 1, and letting h({1, k}) = ek. We then have that g and h
are bijjective because the vi and ei are distinct. These functions give an isomorphism of H = (U,F )
with Ck, so H is a cycle.
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2. Suppose that H = (U,F ) is a cycle of G. Fix bijections g : VCk
→ U and h : ECk

→ F that form an
isomorphism. Let vi = g(i) for all i with 1 ≤ i ≤ k, and let v0 = g(k). Also, let ei = h({i, i + 1}) for
all i with 1 ≤ i < k, and let ek = h({1, k}). Since g and h are bijections, it follows that the ei are
distinct and the vi are distinct, other than v0 = vk. Furthermore, since g and h form an isomorphism,
we have that

v0, e1, v1, . . . , vk−1, ek, vk

is a closed walk. This completes the proof.

Since walks are easier to understand and work with than isomorphisms, one may ask why we do not
define cycles as these closed walks. The answer is that certain distinct closed walks give the “same” cycle.
For example, consider the graph G = (V,E) where:

V = {1, 2, 3, 4}
E = {{1, 2}, {1, 3}, {2, 3}, {3, 4}}

Although this graph only has one cycle, the following three closed walks are all distinct even though the
“trace” the same cycle:

• 1, {1, 2}, 2, {2, 3}, 3, {1, 3}, 1

• 2, {2, 3}, 3, {1, 3}, 1, {1, 2}, 2

• 3, {2, 3}, 2, {1, 2}, 1, {1, 3}, 3

There are 3 other possible such closed walks as well! Thus, if we want to count cycles, then our definition is
superior.

The previous proposition lets us view cycles as arising from closed walks without repeated edges or
vertices. One may ask whether we need this restriction. We certainly do not want to allow edges to repeat,
because if we retrace our steps then that should not be a cycle (and the result will not be isomorphic to Cn).
Simply saying that the edges do not repeat is also not enough. For example, consider the graph G = (V,E)
where:

V = {1, 2, 3, 4, 5}
E = {{1, 2}, {1, 3}, {2, 3}, {3, 4}, {3, 5}, {4, 5}}

This graph looks like a bow tie. If we follow the natural walk around this bow tie shape, then we do not
repeat edges, but we do repeat the vertex 3 in the middle (in addition to the starting/ending vertex 1). This
graph is not isomorphic to C5, so we do not count it as a cycle.

How about if we only enforce that there are no repeated vertices? In trivial cases, this is not enough. For
example, if G is a graph, and e ∈ E is an edge with distinct endpoints u and w, then u, e, w, e, u is a closed
walk without repeated vertices (other than the beginning/end), but it is not a cycle. However, for closed
walks of length k ≥ 3, having no repeated vertices automatically gives that there are no repeated edges.

Proposition 4.30. Let G be a multigraph. Suppose that k ≥ 3 and that

v0, e1, v1, . . . , vk−1, ek, vk

is a closed walk without any repeated vertices other than v0 = vk. We then have that ei 6= ej whenever
1 ≤ i < j ≤ k. Thus, if we let U = {v0, v1, . . . , vk−1} and F = {e1, e2, . . . , ek}, then H = (U,F ) is a
submultigraph of G that is isomorphic to Ck, so H = (U,F ) is a cycle.
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Proof. Notice that
v0, e1, v1, . . . , ek−1, vk−1

is a path in G, so it is a trail in G by Proposition 4.20 is a trail. Hence ei 6= ej whenever 1 ≤ i < j ≤ k − 1.
We also have that

v1, e2, . . . , vk−1, ek, vk

is a path in G, hence a trail, and so ei 6= ej whenever 2 ≤ i < j ≤ k. Finally, notice that e1 6= ek because
v1 is an endpoint of e1, vk−1 is an endpoint of ek, and v1 6= vk−1 because k − 1 ≥ 2 (as k ≥ 3). The last
statement now follows from Proposition 4.29.

Despite the fact that a closed walk of length at least 1, i.e. a closed trail of length at least 1, need not be
a cycle (as in our bow tie example), it turns out that if G contains such a closed trail, then G also contains
a cycle.

Proposition 4.31. If G contains a closed trail of length at least 1, then G contains a cycle.

Proof. Fix a shortest possible closed trail of length at least 1, say it is:

v0, e1, v1, . . . , vk−1, ek, vk

Notice that if k = 1, then we have the closed trail v0, e1, v0, which is a cycle (it is a loop and is isomorphic
to C1), so we are done. Suppose then that k ≥ 2. We claim that the vertices in the list v0, v1, . . . , vk−1
are all distinct. Suppose, for the sake of obtaining a contradiction, that this is not true. Fix i and j with
0 ≤ i < j ≤ k − 1 such that vi = vj . We then have that

vi, ei+1, vi+1, . . . , vj−1, ej , vj

is a closed trail of length j− i. Since 1 ≤ j− i ≤ k−1, this would give an example of a nontrivial closed trail
of length strictly less than k, which is a contradiction. Thus, the vertices in the list v0, v1, . . . , vk−1 are all
distinct. Furthermore, since v0 = vk, we have that vi 6= vk whenever 1 ≤ i ≤ k − 1. Therefore, the vertices
in our closed trail

v0, e1, v1, . . . , vk−1, ek, vk

are all distinct (except for v0 = vk). Using Proposition 4.29, we conclude that G contains a cycle.

Proposition 4.32. Let G be a multigraph with the following properties.

1. V is finite.

2. E 6= ∅.

3. d(v) 6= 1 for all v ∈ V

We then have that G contains a cycle.

Proof. If G has any loops or multiple edges, then it trivially has a cycle. Suppose then that G is a graph.
Since V is finite, any path must have length at most |V |, and hence we may fix a longest possible path in G:

v0, e1, v1, . . . , vk−1, ek, vk

Since this is a path, no vertex is repeated, and so no edge is repeated either (because paths are trails). We
also have k ≥ 1 since G has at least one edge, and this edge is not a loop. Since e1 has v0 as an endpoint,
we conclude that d(v0) ≥ 1. Now e1 is not a loop, so there must be an edge f 6= e1 such that f is incident
to v0. As f is not a loop, we know that f is incident to a vertex other than v0. Let w be the other endpoint
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of f , so w 6= v0. Now we must have that w = vi for some i with 0 ≤ i ≤ k, because if w 6= vi for all i with
0 ≤ i ≤ k, then

w, f, v0, e1, v1, . . . , vk−1, ek, vk

would be a longer path in G, contradicting our choice of a longest possible path in G. Thus, we can fix `
with 0 ≤ ` ≤ k such that w = v`. Notice that ` 6= 0 because w 6= v0. Also, w 6= v1 because f 6= e1 and we
are assuming that G does not have multiple edges. Thus, we must have that ` ≥ 2. Now since the vi are
distinct, we know that that w 6= vi whenever 0 ≤ i < `. Therefore,

w, f, v0, e1, v1, . . . , v`−1, e`, v`

is a closed walk in G without repeated vertices (other than w = v`). Furthermore, since ` ≥ 2, this closed
walk has length at least 3, we may use Proposition 4.30 to conclude that G contains a cycle.

Proposition 4.33. Let G be a connected multigraph and let e be an edge of G. The following are equivalent.

1. G− e is connected.

2. G has a cycle containing e.

Proof. 1→ 2: Suppose that G− e is connected. First notice that if e is a loop, then G certainly has a cycle
containing e. Suppose then that e is not a loop. Let the endpoints of e be u and w. Since G−e is connected,
we can fix a u,w-path

u = v0, e1, v1, e2, v2, . . . , vk−1, ek, vk = w

in the graph G− e. We then have that

v0, e1, v1, e2, v2, . . . , vk−1, ek, vk, e, v0

is a closed walk in G without repeated edges of vertices. Using Proposition 4.29, it follows that G has a
cycle containing e.

2→ 1: Suppose that C is a cycle of G containing e. Let x and y be the endpoints of e (it is possible that
x = y if e is a loop). Let ∼ denote the connectivity relation in G − e. Now let u,w ∈ V be arbitrary. We
will show that u ∼ w. Since G is connected, we may fix a u,w-path in G, say

u = v0, e1, v1, . . . , vk−1, ek, vk = w

Now if e 6= ei for all i, then this u,w-path exists in G− e, and we have u ∼ w. Suppose instead that e = ei
for some i. Since this is a path, it is also a trail by Proposition 4.20, and hence there is a unique ` with
1 ≤ ` ≤ k such that e = e`. Now the endpoints of e are x and y, so either x = v`−1 and y = v`, or x = v`
and y = v`−1.

• Suppose first that x = v`−1 and y = v`. Since e 6= ei whenever 1 ≤ i ≤ `− 1, we have that

u = v0, e1, v1, . . . , e`−1, v`−1 = x

is a u, x-walk in G− e, so u ∼ x. Similarly, since e 6= ei whenever `+ 1 ≤ i ≤ k, we have that

y = v`+1, e`+2, v`+2, . . . , ek, vk = w

is a y, w-walk in G − e, so y ∼ x. Finally, since e lies in a cycle of G containing e, we see that x ∼ y
by following such a cycle around in the other direction. Combining u ∼ x, y ∼ w, and x ∼ y with the
fact that ∼ is an equivalence relation, we conclude that u ∼ w. Thus, there is a u,w-walk in G− e.

• Suppose now that x = v` and y = v`−1. Arguing as in the previous case, we have that u ∼ y, x ∼ w,
and y ∼ x, so u ∼ w. Thus, there is a u,w-walk in G− e.

We have show that there is a u,w-walk in G− e for all vertices u and w, so G− e is connected.
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4.3 Trees and Forests

Definition 4.34. A tree is a connected acyclic graph.

Definition 4.35. A forest is an acyclic graph.

Although we’ve defined a trees and forests as certain types of graphs, notice that we can also define it as
a connected acyclic multigraph because the lack of cycles rules out loops and multiple edges.

Proposition 4.36. If G is a forest, then every connected component of G is a tree.

Proof. Let H be a connected component of G. We know that H is connected by Proposition 4.26. Further-
more, H is acyclic, because a cycle in H would be a cycle in G. Therefore, H is a tree.

Proposition 4.37. If T is a tree with at least 2 vertices, then no vertex of T is isolated, i.e. no vertex of T
has degree 0.

Proof. Let v ∈ V be arbitrary. Since T has at least 2 vertices, we can fix w ∈ V with w 6= v. Now T is
connected, so there exists a v, w-path in T . The first edge of this path must be incident to v, so d(v) ≥ 1.

Definition 4.38. Let T be a tree. A leaf of T is a vertex of degree 1.

Proposition 4.39. If T is a finite tree with n ≥ 2 vertices, then T has a leaf.

Proof. Let T be a finite tree with n ≥ 2 many vertices. Since T is connected and n ≥ 2, we must have that
E 6= ∅ by Proposition 4.37. Now if d(v) 6= 1 for all v ∈ V , then Proposition 4.32 would imply that T contains
a cycle, which is a contradiction. Therefore, there must exist v ∈ V with d(v) = 1, and such a v is a leaf.

Proposition 4.40. If v is a leaf of a tree T , then T − v is a tree.

Proof. Let T be a tree, and let v be a leaf of T . Let e be the unique edge incident to v. Since T − v is a
subgraph of T , it follows that T − v is acyclic (a cycle in T − v would be a cycle in T ). Let u and w be
arbitrary vertices of T − v. Since T is connected, we can fix a u,w-path in T . Notice that e and v can not
occur on this path (because e is the the only edge incident to v, and so such a purported path would need
to use e). Therefore, there is a u,w-path in T − v. Thus, T − v is connected.

The above two results allow one to prove results about finite trees by induction on the number of vertices.
This is an extremely powerful tool.

Theorem 4.41. If T is a tree with n vertices, then T has exactly n− 1 edges.

Proof. By induction on n, i.e. we prove the statement that “Every tree on n vertices has exactly n edges”
by induction. If n = 1, this is trivial. Suppose that n ∈ N+ and we know the result for n. Let T be a tree
on n+ 1 vertices. Fix a leaf v and the unique edge e incident to it. We then have that T − v is a tree on n
vertices, so has n − 1 edges by induction. Since T has one more edge that T − v, we conclude that T has
(n− 1) + 1 = n = (n+ 1)− 1 many edges. The result follows.

Corollary 4.42. If T is a finite tree with n ≥ 2 vertices, then T has at least two leaves.

Proof. Let T be a finite tree with n ≥ 2 vertices. By Theorem 4.41, we know that T has exactly n−1 edges.
Thus ∑

v∈V
d(v) = 2(n− 1) = 2n− 2

103



Now if there is only one leaf, then d(v) ≥ 2 for all other vertices v by Proposition 4.37, so∑
v∈V

d(v) ≥ 1 + 2(n− 1)

= 2n− 1

> 2n− 2,

a contradiction. Thus, T must have at least two leaves.

Proposition 4.43. If G is a finite forest with n vertices and k connected components, then G has n − k
edges.

Proof. Let the components of G be H1, H2, . . . ,Hk. Suppose that Hi has mi many vertices for each i. Since
each vertex lies in a unique connected component (recall that the vertices of a connected component are
equivalence classes of ∼), we have

k∑
i=1

mi = n

Now each Hi is a tree by Proposition 4.36, so we know that Hi has mi−1 many edges for each i by Theorem
4.41. Since every edge is in a unique Hi by Proposition 4.24, it follows that the number of edges in G equals

k∑
i=1

(mi − 1) =

(
k∑

i=1

mi

)
− k

= n− k.

This completes the proof.

Definition 4.44. Let G be a connected graph. A spanning tree of G is a subgraph T of G such that:

• VT = VG (i.e. T is obtained from G by only deleting edges).

• T is a tree.

Proposition 4.45. Every finite connected graph has a spanning tree.

Intuitively, we can argue this as follows. Suppose that G is a finite connected graph. If G has no cycles,
then G itself is a spanning tree of G, and we are done. If G contains a cycle, then we pick an arbitrary edge
e in a cycle, and notice that G− e is a connected subgraph (by Proposition 4.33) with one fewer edge. If this
subgraph of G has no cycles, then it is a spanning tree of G. Otherwise, if we remove another edge from a
cycle in G− e, then the result is a connected subgraph with two fewer edges than G. Continue this process,
and notice that we must stop because G has only finitely many edges. More formally, we can bypass this
“continue” argument in the following way.

Proof. Let G be a finite connected graph. Notice that there is at least one connected subgraph H of G with
VH = VG, namely G itself. Amongst all such connected subgraph H of G with VH = VG, choose one with the
least possible number of edges, and call the resulting subgraph T . We then have that VT = VG and that T
is connected by definition. If T contained a cycle, then we could fix an arbitrary edge e in such a cycle, and
notice that T − e is a connected subgraph of G (by Proposition 4.33) with one fewer edge, a contradiction.
Therefore, T is acyclic as well. It follows that T is a tree, and hence a spanning tree of G.

Corollary 4.46. If G is a finite connected graph with n vertices, then G contains at least n− 1 edges.
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Proof. Fix a spanning tree T of G. We then have that T contains n− 1 edges, so G contains at least n− 1
edges.

Theorem 4.47. Let G be a finite graph with n vertices. The following are equivalent.

1. G is a tree.

2. G is a connected graph with n− 1 edges.

3. G is an acyclic graph with n− 1 edges.

4. G is connected, but G− e is disconnected for every edge e.

5. G is acyclic, but G+ e has a cycle for any new edge e having both endpoints in VG.

Proof. 1→ 2: Immediate from the definition of a tree and Theorem 4.41.
1→ 3: Immediate from the definition of a tree and Theorem 4.41.
1→ 4: Immediate from the definition of a tree and Proposition 4.33.
1 → 5: Suppose that G is a tree, and that e is a new edge. Since (G + e)− e = G is connected, e must

be an element of some cycle of G+ e by Proposition 4.33. In particular, G+ e has a cycle.
2→ 4: Immediate from Corollary 4.46.
4 → 1: Since G − e is disconnected for every edge e, Proposition 4.33 implies that no edge of G is

contained in a cycle. Thus, G is acyclic.
3 → 1: Since G is acyclic, it is a forest. Let k be the number of connected components of G. By

Proposition 4.43, we know that G has n− k edges. It follows that n− k = n− 1, hence k = 1. Therefore, G
is connected, and hence a tree.

5 → 1: We need to argue that G is connected. Let u,w ∈ V and let e be a new edge with endpoints u
and w. By assumption, we know that G+e has a cycle, and since G is acyclic it must have a cycle containing
e. Fix such a cycle, and walk around it the other way to obtain a u,w-path in G.

We now embark on a quest to count the number of trees of a given size. In other words, given n ∈ N+,
how many trees are there with vertex set [n]? Let’s consider the case when n = 4. To determine what
we want to count, we first need to deal with a potential source of ambiguity in the question. For example,
consider the trees T1 and T2 each with vertex set [4], where the edge set of T1 is

{{1, 2}, {1, 3}, {1, 4}}

and the edge set of T2 is
{{1, 2}, {2, 3}, {2, 4}}

It is straightforward to check that these are each trees. At first sight, they clearly look different because
the edge sets are distinct. However, it’s not hard to see that the trees T1 and T2 are isomorphic (intuitively,
we can draw T1 by putting 1 in the middle with 3 edges out to to other vertices, and we can draw T2 by
putting 2 in the middle with 3 edges out to the other vertices). Thus, we need to ask whether we are actual
counting the number of trees with vertex set [n], or the number is isomorphism types of trees with vertex set
[n]. Although both questions are interesting, we are going to do the former here. That is, we will consider
the above two trees as different.

Suppose now that we want to count the number of trees with vertex set [4]. There are 16 such trees, and
we give two ways to count this.
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1. There are two isomorphism types for a tree with vertex set [4]. First, we can have a tree with a vertex
of degree 3 that is adjacent to all other vertices (so there are 3 leaves). Second, we can have a tree
with exactly 2 leaves and two vertices of degree 2 (recall that a tree on at least 2 vertices has at least
2 leaves, and that the sum of the degrees will be 2 · (4− 1) = 6), and it’s straightforward to check that
such a tree is isomorphic to P4. We now count the number of trees of each isomorphism type.

• There are exactly 4 trees of the first type, because they are completely determined by the choice
of the vertex of degree 3.

• We now argue that there are exactly 12 trees of the second type. We can choose the two leaves
in
(
4
2

)
= 6 ways. This then determines the vertices of degree 2 (which will be adjacent to each

other). To determine the tree, we now need only pick which of these two is adjacent to the smaller
leaf, and we have 2 choices. Thus, the number of such trees is 4 · 2 = 12.

2. Here is another argument. A tree with vertex set [4] will have exactly 4 − 1 = 3 edges. Since there
are

(
4
2

)
= 6 many possible edges, there are

(
6
3

)
= 20 many graphs with vertex set set [4] having exactly

3 edges. However, some of these will fail to be trees because they are not connected. This happens
exactly when the graph consists of a cycle of length 3 and an isolated vertex, and there are 4 such
graphs (because there are 4 choices for the isolated vertex). It follows that there are 20 = 4 = 16 many
trees with vertex set [4].

Counting the number of trees with vertex sets [n] for other small values of n is also reasonably straightforward:

1. There is 1 tree with vertex set [1].

2. There is 1 tree with vertex set [2].

3. There are 3 trees with vertex set [3] (we need only the pick the unique vertex of degree 2).

4. There are 16 trees with vertex set [4] (as seen above).

5. There are 125 trees with vertex set [5], which can be argued through a slightly more complicated
analysis than the one for [4].

However, as we move toward larger values of n, the above method become unwieldy. However, there is a
natural pattern in the above numbers, and we will indeed prove the following result using a more sophisticated
approach

Theorem 4.48 (Cayley’s Formula). For each n ∈ N+, the number of trees with vertex set [n] is nn−2.

In order to prove this, we will “code” each tree by a sequence of numbers of length n − 2, where each
element of the sequence is an integer between 1 and n (inclusive). Given a tree T with vertex set [n], we
know that it has n− 1 edges. Consider the following tree:

6 7
| |

2 − 4 − 3 − 1 − 5

The edge set of this tree is
{{1, 3}, {1, 5}, {1, 7}, {2, 4}, {3, 4}, {3, 6}}

Of course, the edge set is a set, so we can reorder it any way we like without affecting the edges, and we
can also reorder the two endpoints of an edge. Our first task will be to give an ordering to the edge set in
a way that reflects the “structure” of the tree. To do this, given n ≥ 2 and a tree T on [n], we define a two
sequences (a1, a2, . . . , an−1) and (p1, p2, . . . , pn−1) as follows. Since T is a tree with at least two vertices, we
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know that T has a leaf by Proposition 4.39. Let a1 be the smallest label of a leaf, and let p1 be its unique
neighbor. Now if we delete a1 from T , then we know from Proposition 4.40 that T − a1 is also a tree. If this
tree has at least two vertices, then let a2 be the smallest label of a leaf, and let p2 be its unique neighbor.
Continue until we end with a unique vertex. Once we have completed this process, list the sequences on top
of each other as follows:

a1 a2 a3 · · · an−2 an−1
p1 p2 p3 · · · pn−2 pn−1

Notice that the n− 1 edges of T will be:

{a1, p1}, {a2, p2}, . . . , {an−1, pn−1}

For example, given our tree
6 7
| |

2 − 4 − 3 − 1 − 5

we obtain the following two sequences:
2 4 5 6 3 1
4 3 1 3 1 7

For another example, given the tree
4 5 7
� | �

1 − 2 − 6 − 3

we obtain the following two sequences:
1 3 4 5 6 2
2 6 2 2 2 7

We have the following properties:

Proposition 4.49. Let T be a tree with vertex set [n].

1. a1, a2, . . . , an−1 is a permutation of [n− 1].

2. pn−1 = n.

3. For all k ∈ [n], d(k) is the number of times that k occurs in a1, a2, . . . , an−1, p1, p2, . . . , pn−1.

4. For all k ∈ [n], d(k) equals one plus the number of times that k occurs in p1, p2, . . . , pn−2.

Proof. We have the following:

1. Certainly every number appears at most once as an ai because it gets deleted after appearing there.
Furthermore, at each stage we have a tree on at least 2 vertices, so it has at least 2 leaves, and thus
we never pick n.

2. Since we never have ai = n, it follows that after n− 2 stages we have two vertices, one of which is n.
We pick the other as an−1, and thus pn−1 = n.

3. Since the edge set of T is
{{a1, p1}, {a2, p2}, . . . , {an−1, pn−1}}

we see that d(k) equals the number of times that k occurs in the two lists.

4. This follows immediately from 3 because every k ∈ [n] occurs exactly once in a1, a2, . . . , an−1, pn−1 by
1 and 2.
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There is some unnecessary information in the two sequences. As we’ve seen, we don’t need pn−1 because
we know what it will be. In fact, we also don’t need the ai at all, because we can recover them from the
sequence (p1, p2, . . . , pn−2).

Definition 4.50. Given a tree T with vertex set [n], we call the sequence (p1, p2, . . . , pn−2) the Prüfer code
of T .

To see this that we recover the ai from the Prüfer code, let’s first consider an example. Suppose that T
is a tree with and we know the following values:

? ? ? ? ? ?
5 1 7 5 2 ?

Since there are 6 entries in each row, we know that T is a tree with vertex set [7]. We know that p6 = 7, so
we can fill that in:

? ? ? ? ? ?
5 1 7 5 2 7

Next, a1 will be the smallest leaf. Using Proposition 4.49, we know that the degree of any vertex equals one
plus the number of times that k occurs in 5, 1, 7, 5, 2. Thus, we are looking for the least number that does
not occur in this list. It follows that a1 = 3, and we have:

3 ? ? ? ? ?
5 1 7 5 2 7

To carry this forward, consider the following table:

vert 0 1 2 3 4 5

1 2 2 1 x x x
2 2 2 2 2 2 1
3 1 x x x x x
4 1 1 x x x x
5 3 2 2 2 1 x
6 1 1 1 1 x x
7 2 2 2 1 1 1

In the column labeled 0, we have put the degree of each vertex by adding 1 to the number of times that it
occurs in 5, 1, 7, 5, 2. Since 3 is the smallest leaf of T (as discussed above), and we know that it’s unique
neighbor is 5, then when we delete vertex 3 from the tree, we also decrease the degree of 5 by one. The
column labeled 1 gives the degrees after this deletion. The smallest leaf remaining can now be seen to be 4,
which gives the value of a2. Since the unique neighbor of 4 in that tree is 1, we decrease the degree of 1 by
one after deletion to form the next column. Continuing this process, we arrive at the following sequence:

3 4 1 6 5 2
5 1 7 5 2 7

The above procedure illustrates the following result.

Proposition 4.51. Let T be a tree with vertex set [n]. From p1, p2, . . . , pn−2, we can completely determine
pn−1 along a1, a2, . . . , an−1. Thus, if T and S are two trees with vertex set [n] and the same Prüfee code
(p1, p2, . . . , pn−2), then they have same values for pn−1, a1, a2, . . . , an−1 as well, so they have the same edge
set and hence are the same tree. It follows that the function that takes a tree with vertex set [n] and produces
the Prüfer code (p1, p2, . . . , pn−2) of T is injective.
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Proof. Since T is a tree with vertex set [n], know that pn−1 = n. Using Proposition 4.49, we can compute
d(k) for each k ∈ [n]. Since a1 is the smallest leaf, we may let a1 be the smallest element of [n] that is not
in the set {p1, p2, . . . , pn−2}. In constructing these sequences, after we write down a1 and p1, we delete the
leaf a1 together with the unique edge incident to it. In the resulting tree, we no longer have a1 as a vertex,
and the degree of p1 will be reduced by 1. Thus, the leaves of the resulting tree T −a1 are then the numbers
other than a1 which do not occur in the list p2, p3, . . . , pn−2. In other words, a2 will be the smallest element
of [n] that is not in the set {a1}∪ {p2, p3, . . . , pn−2}. Now we delete a2 and hence reduce the degree of p2 by
1, so a3 will be the smallest element of [n] that is not in the set {a1, a2}∪ {p3, . . . , pn−2}. In general, we can
recursively reconstruct the sequence a1, a2, . . . , an−1 because ai is the smallest element of [n] not in the set

{a1, a2, . . . , ai−1} ∪ {pi, pi+1, . . . , pn−2},

which must exist since there are at most n − 2 many numbers. Therefore, we can reconstruct pn−1 along
a1, a2, . . . , an−1. The remaining statements follow.

We’ve shown that every sequence (p1, p2, . . . , pn−2) occurs as the Prüfer code of at most one tree with
vertex set [n]. We now show that every such code arises. Given any sequence (p1, p2, . . . , pn−2), the idea
is to define the number pn−1 and a1, a2, . . . , an−1 as in the proof of the previous result, and check that the
resulting graph is a tree that produces the given code.

Proposition 4.52. Let n ∈ N+, and suppose that (q1, q2, . . . , qn−2) is sequence of integers with 1 ≤ qi ≤ n
for all i. Let qn−1 = n and define b1, b2, . . . , bn−1 recursively by letting bi be the smallest element of [n] not
in the set

{b1, b2, . . . , bi−1} ∪ {qi, qi+1, . . . , qn−2}

(which must exist since there are at most n− 2 many numbers). If we let T be the graph with vertex set [n]
and edge set

{{b1, q1}, {b2, q2}, . . . , {bn−1, qn−1}},

then T is a tree with Prüfer code (q1, q2, . . . , qn−2).

Proof. Notice that if i < j, then bj 6= bi by the recursive definition of the sequence b1, b2, . . . , bn−1 (because
bi will be an element of the set {b1, b2, . . . , bj−1}. Thus, there are no repeated elements in the sequence
b1, b2, . . . , bn−1. Furthermore, since for each i, the set

{b1, b2, . . . , bi−1} ∪ {qi, qi+1, . . . , qn−2}

has at most n−2 many elements, and we choose bi to be the smallest element of [n] not in this set, it follows
that bi ∈ [n − 1] for all i. Putting these facts together, we conclude that b1, b2, . . . , bn−1 is a permutation
of [n − 1]. Now bi 6= qi for all i by the recursive definition. Also, if i < j, then {bi, qi} 6= {bj , qj} because
bi 6= bj from above and bi 6= qj by the recursive definition. Thus, we can let T be the graph with vertex set
[n] and edge set

{{b1, q1}, {b2, q2}, . . . , {bn−1, qn−1}}.

Since {bi, qi} 6= {bj , qj} whenever i < j, it follows that T has n − 1 many edges. We now show that T is
acyclic. To see this, think about adding the edges of T in reverse order, i.e. add

{bn−1, qn−1}, {bn−2, qn−2}, . . . , {b2, q2}, {b1, q1}

one at a time. At each stage, we claim that the resulting graph is acyclic. This is certainly true for the
graph with just the single edge {bn−1, qn−1}. Suppose that the we know that the graph with edge set

{{bn−1, qn−1}, {bn−2, qn−2}, . . . , {bi+1, qi+1}}
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is acyclic. Now bi /∈ {bi+1, . . . , bn−2, bn−1} from above, and bi /∈ {qi+1, . . . , qn−2, qn−1} by definition. Thus,
in the graph with edge set

{{bn−1, qn−1}, {bn−2, qn−2}, . . . , {bi+1, qi+1}, {bi, qi}}

we see that bi has degree 1. Now any cycle in this graph would have to include the new edge, but such a
cycle would have to include the vertex bi, which is impossible because the degree of bi is 1 in this graph.
Therefore, the graph with the new edge is acyclic. By induction, it follows that T is acyclic. Since T is an
acyclic graph with n vertices and n− 1 edges, Theorem 4.47 implies that T is a tree.

Now that we know that T is a tree, we just need to check that the process of constructing the sequences
to obtain the Prüfer code (i.e. finding the smallest leaf, deleting it, etc.) to produce

a1 a2 a3 · · · an−2 an−1
p1 p2 p3 · · · pn−2 pn−1

results in our sequences
b1 b2 b3 · · · bn−2 bn−1
q1 q2 q3 · · · qn−2 qn−1

Since the edge set of T equal {{bi, qi} : 1 ≤ i ≤ n−1}, we know that the degree of a vertex is just the number
of times that it occurs in b1, b2, . . . , bn−1, q1, q2, . . . , qn−1. Furthermore, since we know that qn−1 = n and
that b1, b2, . . . , bn−1 is a permutation of [n− 1], it follows that the degree of any vertex is 1 plus the number
of times that it occurs in q1, q2, . . . , qn−2. Now by definition of our recursive sequence, we have that b1 is the
smallest element of [n] not in the set {q1, q2, . . . , qn−2}, which means that b1 is the smallest vertex of degree
1, and hence the smallest leaf. It follows that a1 = b1 and hence p1 = q1 (because {b1, q1} is an edge of T ).
Since b1 is a leaf of T , we have that T − b1 is a tree, and we know that it has edge set

{{b2, q2}, {b3, q3}, . . . , {bn−1, qn−1}}.

In the resulting tree, we no longer have b1 as a vertex, and the degree of q1 will be reduced by 1. Thus,
the leaves of the resulting tree T − b1 are then the numbers other than b1 which do not occur in the list
q2, q3, . . . , qn−2. By definition of b2, we conclude then that b2 will be the smallest leaf in T − b1. Thus,
a2 = b2 and p2 = q2. Now delete b2 and hence reduce the degree of q2 by 1, and a similar argument shows
that b3 will be the smallest leaf in the resulting tree. In this way (or by induction), it follows that ai = bi
and pi = qi for all i.

We can now prove Cayley’s Formula.

Proof of Theorem 4.48. Let n ∈ N+. If n = 1, then there is trivially only 1 tree with vertex set [1], and we
have 11−2 = 1. Suppose then that n ≥ 2. Define a function from trees with vertex set [n] to {1, 2, . . . , n}n−2
(i.e. the set of sequences of integers between 1 and n of length n−2) by assigning to each tree its Prüfer code.
Notice that this function is injective by Proposition 4.51 and is surjective by Proposition 4.52. Therefore, the
function is a bijection. Since |{1, 2, . . . , n}n−2| = nn−2, there are nn−2 many trees with vertex set [n].

4.4 Minimum Weight Spanning Trees and Kruskal’s Algorithm

Let R≥0 = {r ∈ R : r ≥ 0}. Suppose that G is a graph, and w : E → R≥0 is a function. Given e ∈ E, we
think of w(e) as the weight of the edge e, and we think about it as the “cost” of including edge e in our
graph G. Based on these costs, we can choose to either include an edge or not. A natural question is how
to include enough edges so that that we still have a connected graph, but so that we minimize the resulting
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cost. Since we will only think about deleting edges, we consider subgraphs H of G with VH = VG. Now
given such a subgraph H = (VG, EH) of G, we define

w(H) =
∑

e∈EH

w(e)

to be the sum of the weights of the edges that are in H. Notice that if our connected subgraph H includes
a cycle, then we know that we can remove an edge of that cycle and still have a connected subgraph by
Proposition 4.33. Since the weight of every edge is nonnegative, deleting such an edge does not increase
the cost. In other words, we want what is called a minimum weight spanning tree of G. This leads to the
following problem.

Question 4.53. Given a connected graph G and a function w : E → R≥0, how do we build a spanning tree
T of G such that w(T ) is as small as possible?

There are (at least) two natural attempts to build such a spanning tree by making a series of choices
that seem reasonable.

1. Idea 1: Start with no edges, and include edges from G one at a time. We then have to ask ourselves
which edge to include next. Since we start with no edges, the idea is to include one edge without ever
introducing a cycle. Since we are tying to minimize cost, the idea is to pick the cheapest edge that
does not introduce a cycle at each stage.

2. Idea 2: Start with all of the edges of G, and delete edges one at a time. We then have to ask ourselves
which edge to include next. We should only delete edges in cycles because we want a connected graph
at the end. Since we are trying to minimize cost, the idea is to pick the most expensive edge that is
included in a cycle at each stage.

Notice that each of these are greedy algorithms. In other words, at each step we are picking a choice that
looks best locally at that moment, without any assurance that it will produce us a globally optimal solution
in the end. In general, greedy algorithms do not produce globally optimal solutions. For example, if you
want to climb a mountain, and you do it by always taking the one step that will increase your elevation
most, then you may end up at the top of a tiny hill close by instead (because climbing the mountain may
involve going down at some points). For another example, looking only one step ahead in chess may result
in a move that looks excellent (say you kill a queen with your pawn), but it may be a globally bad move in
that your opponent can checkmate you in the next move. We will see more precise examples of the failure of
greedy algorithms in later sections. However, for the minimum weight spanning tree problem, it turns out
that both of the above procedures do indeed produce minimum weight spanning trees!

We will study Idea 1, which as known as Kruskal’s algorithm, because it is faster in practice (as we discuss
below. However), let’s first formalize this procedure more carefully. Suppose that we have a connected graph
G and a function w : E → R≥0. We build a sequence H0, H1, H2, . . . ,Hn−1 of subgraphs of G with the
following properties:

• VHi = VG for each i.

• Hi has i edges for each i.

• Hi is acyclic for each i.

We start by letting H0 be the subgraph of G consisting of all of the vertices of G, but no edges. Suppose
that we have constructed Hi with the above properties. Let

Si = {e ∈ EG : e /∈ EHi and Hi + e is still acyclic}
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We pick an element of Si such that w(e) is as small as possible (if there are multiple such edges in Si, we
pick an arbitrary one), and we let Hi+1 = Hi + e. Once we’ve proceeding through each of the stages, we
then take Hn−1 as our answer. Although this ends the description of Kruskal’s algorithm, there are several
extremely important questions.

1. Why does Kruskal’s algorithm never get stuck? In other words, why is each Si nonempty?

2. Why is Hn−1 a spanning tree of G?

3. Assuming that Hn−1 is a spanning tree of G, why is a minimum weight spanning tree? In other words,
why is it the case that w(Hn−1) ≤ w(T ) for all spanning trees T of G?

4. How do we implement it efficiently? After all, determining the elements of Si by going through each
edge e and checking if there is a cycle in Hi + e seems to be costly.

In order to prove 1 (and eventually to given efficient methods to answer 4), we use the following result.

Proposition 4.54. Let G be an graph. Let u,w ∈ V be distinct vertices that are not adjacent. Let e be a
new edge with endpoints u and w.

1. If u and w are in the same connected component of G, then e is an element of a cycle of G+ e.

2. If G is acyclic and u and w are in distinct connected components of G, then G+ e is acyclic.

Proof. 1. Since u and w are in the same connected component of G, we can fix a u,w-path

u, f1, v1, f2, v2, . . . , fk, w

in G. Since this is a path, it is also a trail, and hence there are no repeated vertices or edges. We then
have that

u, f1, v1, f2, v2, . . . , fk, w, e, u

is a closed walk with repeated vertices or edges (because e /∈ EG and hence e 6= fi for all i), so
Proposition 4.29 implies that e is an element of a cycle of G+ e.

2. Suppose that G is acyclic and that u and w are in distinct connected components of G. Suppose
instead that G+ e contains a cycle C. Since G is acyclic, the cycle C must include the edge e. Using
Proposition 4.29, there is closed walk without repeated vertices and edges corresponding to this cycle.
By shifting the walk appropriately, we can write this closed walk as

w, e, u, f1, v1, f2, v2, . . . , fk, w

Notice that fi 6= e for all i because there are no repeated edges. If follows that

u, f1, v1, f2, v2, . . . , fk, w

is a u,w-walk in G, so u is in the same connected component of G, which is a contradiction. Therefore,
G+ e must be acyclic.

Corollary 4.55. Suppose that in the above algorithm we are at a stage i with 0 ≤ i ≤ n− 2 where we have
that Hi is acyclic, has i edges, and satisfies VHi

= VG. We have the following:

1. Si = {e ∈ EG : e /∈ EHi and the endpoints of e are in distinct connected components of Hi}

2. Si 6= ∅.
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3. Hi+1 is an acyclic graph with i+ 1 edges.

Proof. 1. This follows immediately from the previous proposition and the fact that Hi is acyclic.

2. Notice that |VHi | = |VG| = n, and |EHi | = i ≤ n − 2, so Hi is not connected by Corollary 4.46. Fix
vertices u and w of Hi that are in distinct connected components of Hi. Since G is connected, there
is a u,w-path in G, say

u = v0, f1, v1, f2, v2, . . . , fk, vk = w

Since w is not in the same connected component as u in Hi, there is a smallest i ≥ 1 such that vi is
not in the same connected component as u in Hi. We then have that vi−1 is in the same connected
component as u in Hi. Thus, vi−1 and vi are in distinct connected components in Hi, and so fi ∈ Si.
Therefore, Si 6= ∅.

3. Since Hi+1 is obtained from Hi by adding a single edge from Si, this follows immediately from part 1
above and part 2 of the previous proposition.

We’ve now seen that each Si 6= ∅, so the above algorithm never gets stuck and results in acyclic subgraph
Hn−1 of G with n − 1 edges and such that VHn−1 = VG. Since Hn−1 is an acyclic graph with n − 1 edges,
Theorem 4.47 implies that Hn−1 is a tree. Therefore, Hn−1 is a spanning tree of G. We now answer the
third question about why it is a minimum weight spanning tree.

Theorem 4.56. Hn−1 is a minimum weight spanning tree of G.

Proof. We first prove by induction on i that Hi is contained in some minimal weight spanning tree of G
(i.e. we argue that at each stage there is still the possibility of extending to a spanning tree of minimal
weight). For the base case of i = 0, we have that H0 has no edges, so certainly H0 is contained in a minimum
weight spanning tree.

For the inductive step, suppose that 0 ≤ i ≤ n−2 and the statement is true for i, i.e. that Hi is contained
in some minimum weight spanning tree of G. Fix a minimum weight spanning tree T of G such that Hi is
contained in T . Suppose that the algorithm picks edge e, so e ∈ Si and w(e) ≤ w(f) for all f ∈ Si. We need
to argue that Hi+1 = Hi + e is contained in some minimum weight spanning tree of G. We have two cases.

• If e is an edge of T , then Hi + e is contained in T , which is a minimum weight spanning tree of G.

• Suppose that e is not an edge of T . By Theorem 4.47, the graph T + e has a cycle. Fix such a cycle
C of T + e, and notice that e must be an edge of C because T is acyclic. Now Hi + e is also acyclic
because e ∈ Si, so C must contain an edge f that is not an edge of Hi + e. Since f 6= e, it follows that
f must be an edge of T . Since f is an element of a cycle of the connected graph T + e, we may use
Proposition 4.33 to conclude that T + e− f is connected. Combining this with the fact that T + e− f
has the same number of edges as T , which is n− 1, we conclude that T + e− f is a spanning tree of G
by Theorem 4.47. We also have that Hi + f is a subgraph of T , so Hi + f is acyclic, and hence f ∈ Si

as well. Therefore, we must have
w(e) ≤ w(f).

Thus w(e)− w(f) ≤ 0, and hence

w(T + e− f) = w(T ) + w(e)− w(f) ≤ w(T ).

Now T is minimum weight spanning tree, so we must have w(T + e − f) = w(T ), and hence that
T + e− f is also a minimum weight spanning tree. Since Hi+1 = Hi + e is contained in T + e− f , this
completes the inductive step.
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Since Hi is contained in a minimum weight spanning tree of G for all i with 0 ≤ i ≤ n − 1, it follows that
Hn−1 is contained in some minimum weight spanning tree T of G. We already know from above that Hn−1
is a spanning tree of G. Thus, by Theorem 4.47, Hi + e is not a tree for any new edge e. It follows that
Hn−1 = T , and hence Hn−1 is a minimum weight spanning tree of G.

We’ve finally answered our first three questions about Kruskal’s Algorithm, so we know that it does
indeed produce a minimum weight spanning tree of G. How do we implement it efficiently? As mentioned
above, the difficult part is computing the sets Si. We know from Corollary 4.55 that

Si = {e ∈ EG : e /∈ EHi
and the endpoints of e are in distinct connected components of Hi}

so instead of checking if an edge introduces a cycle, we can instead check if the endpoints are in distinct
connected components of Hi. Of course, it is not immediately obvious how to do that. The essential idea
is that we can keep track of the vertices of each of the connected components of the Hi throughout the
algorithm by using the next result.

Proposition 4.57. Let G be a graph, and let u,w ∈ V be two vertices of G such that u and w are in distinct
connected components of G. Consider the graph G′ = G + e where e is a new edge with endpoints u and
w. Let x ∼G y mean that there is an x, y-walk in G and let x ∼G′ y mean that there is an x, y-walk in G′.
Moreover, for each v ∈ V , let Cv be the equivalence class of v under ∼G, and let C ′v be the equivalence class
of v under ∼G′ . Thus, Cv consists of the vertices of the connected component of v in G, while C ′v consists
of the vertices of the connected component of v in G′. We have the following.

1. If y /∈ Cu and y /∈ Cw, then C ′y = Cy.

2. If either y ∈ Cu or y ∈ Cw, then C ′y = Cu ∪ Cw.

Proof. First notice that for any a, b ∈ V , if a ∼G b, then a ∼G′ b because an a, b-walk in G is an a, b-walk in
G′.

1. Suppose that y /∈ Cu and y /∈ Cw, so y 6∼G u and y 6∼G w.

• We first show that Cy ⊆ C ′y. Let z ∈ Cy be arbitrary. We then have that y ∼G z, so y ∼G′ z
from above, and hence z ∈ C ′y.

• We now show that C ′y ⊆ Cy. Let z ∈ C ′y be arbitrary. We then have that y ∼G′ z and so we can
fix a y, z-path P in G′. We claim that P does not contain the edge e. Suppose instead that P
does include the edge e. Notice that since P is a path, it is a trail, so it must include e only once.
Thus, either u or w occurs just before e on the path P , and if we cut off the path at this point,
then we would have either an y, u-path in G or a y, w-path in G. Thus, either y ∼G u or y ∼G w,
each of which contradict our assumption. Thus, e does not occur in P . It follows that P is an
y, z-path in G, so y ∼G z and hence z ∈ Cy.

Combining these, we conclude that C ′y = Cy.

2. Suppose that y ∈ Cu, so u ∼G y.

• We first show that Cu ∪ Cw ⊆ C ′y. Let z ∈ Cu ∪ Cw be arbitrary.

– Case 1: Suppose that z ∈ Cu. We then have u ∼G z. Since u ∼G y, we can use symmetry
and transitivity of ∼G to conclude that y ∼G z. Therefore, y ∼G′ z from above, and hence
z ∈ C ′y.
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– Case 2: Suppose that z ∈ Cw. We then have w ∼G z, and so w ∼G′ z from above. Since
u ∼G y, we also have u ∼G′ y from above. Finally, notice that u ∼G′ w via the new edge e.
Using symmetry of ∼G′ , we have

y ∼G′ u ∼G′ w ∼G′ z

By transitivity of ∼G′ , if follows that y ∼G′ z, so z ∈ C ′y.

Therefore, in either case we have z ∈ C ′y. It follows that Cu ∪ Cw ⊆ C ′y.

• We now show that C ′y ⊆ Cu ∪ Cw. Let z ∈ C ′y be arbitrary. We then have that y ∼G′ z, so we
can fix a y, z-path P in G′.

– Case 1: Suppose that P does not include the edge e. We then have that P is a y, z-path in
G, so y ∼G z. Since we also know that u ∼G y, we can use transitivity of ∼G to conclude
that u ∼G z. In follows that z ∈ Cu, and hence z ∈ Cu ∪ Cw.

– Case 2: Suppose that P does include the edge e. Since P is path, we know that it is trail,
and hence e occurs exactly once. On this path, we then have that u and w occur immediately
before and after e. If u occurs immediately after e on P , then the portion of the path that
starts with u and goes to the end is a u, z-path in G, so u ∼G z and hence z ∈ Cu. Similarly,
if w occurs immediately after e on P , then we obtain a w, z-path in G, so w ∼G z and hence
z ∈ Cw. Thus, we have z ∈ Cu ∪ Cw.

Therefore, in either case, we have z ∈ Cu ∪ Cw. It follows that C ′y ⊆ Cu ∪ Cw.

3. The case where y ∈ Cw, then the argument that C ′y = Cu∪Cw is completely analogous to the argument
in 2.

We can use this result to efficiently implement Kruskal’s Algorithm as follows. Suppose that G is a finite
connected graph and w : E → R≥0 is a weight function. First, sort the edges by weight in increasing order,
and label all of the vertices with distinct numbers. Now go through the sorted list of edges in order once
and do the following for each edge. Suppose that we are examining edge e with endpoints u and w. If u
and w have the same label, do nothing but move on to the next edge. Suppose that u and w have distinct
labels. We then have that u and w are in two distinct connected components of the current Hi, so e ∈ Si,
and its straightforward to check that it will be an element of Si of minimal weight (because the edges are
sorted and we’re going through them in order). Thus, we add e to Hi to form Hi+1, and update the labels
so that we “merge” all vertices that have a label equal to one of the labels of u and w (i.e. change all of the
labels of vertices that have the same label as w to now all have the same label as u).

4.5 Vertex Colorings and Bipartite Graphs

Definition 4.58. Let G be a graph and let k ∈ N+.

• A function c : V → [k] is a k-coloring of (the vertices of) G.

• We say that a coloring c : V → [k] is proper if c(u) 6= c(w) whenever u,w ∈ V are distinct adjacent
vertices.

• We define χ(G), the chromatic number of G, to be the smallest k ∈ N+ such that G has a proper
k-coloring.

If G is a graph and k ∈ N+, then saying that χ(G) ≤ k is equivalent to saying that there is a proper
k-coloring of G. Notice also that if k ≤ `, then any proper k-coloring of a graph G is automatically a proper
`-coloring of G. Thus, to prove that χ(G) = k, we need to do two things:
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• Show that there does indeed exist a proper k-coloring of G (this shows that χ(G) ≤ k).

• Show that there does not exist a proper (k − 1)-coloring G (this shows that χ(G) 6≤ k − 1).

Notice that χ(G) = 1 if and only if G has no edges. For a more interesting example, the chromatic
number of a cycle graph on 5 vertices is 3, i.e. χ(C5) = 3. To see that χ(C5) ≤ 3, consider the following
coloring c : [5]→ [3] is a proper coloring of C5:

• c(1) = 1

• c(2) = 2

• c(3) = 1

• c(4) = 2

• c(5) = 3

To show that χ(C5) 6≤ 2, we need to show that there is no proper 2-coloring of C5. Consider a supposed
proper coloring c : [5] → [2] of C5. We must have c(1) 6= c(2) and c(2) 6= c(3), so since the codomain of c
has 2 elements, we must have c(1) = c(3). Similarly, we have c(3) 6= c(4) and c(4) 6= c(5), so c(3) = c(5).
Therefore, we would need to have that c(1) = c(5), contradicting the fact that 1 and 5 are adjacent. Thus,
χ(C5) 6≤ 2, and hence χ(C5) = 3.

How can we attempt to give a proper coloring of a finite graph G. One idea is do a greedy coloring. That
is, fix an ordering v1, v2, . . . , vn of the vertices of G, say v1, v2, . . . , vn. Now color the vertices in order by
giving vertex vi the least color that is possible. By formalizing this, we obtain the following result.

Proposition 4.59. χ(G) ≤ ∆(G) + 1 for all graphs finite G (where ∆(G) is the largest degree of a vertex
of G).

Proof. Let G be a finite graph. Fix an ordering v1, v2, . . . , vn of the vertices. We now define a coloring
c : V → N+ of the vertices in order recursively as follows. Let c(v1) = 1. At stage k + 1, once we’ve colored
v1, v2, . . . , vk, let

Sk+1 = {i ∈ [k] : vi and vk+1 are adjacent}

and notice that |Sk+1| ≤ ∆(G). Define c(vk+1) to be the least element of

N+\{c(vi) : i ∈ Sk+1}

By doing this, we obtain a proper coloring c of G such that c(vi) ≤ ∆(G) + 1 for all i because at each stage,
the set {c(vi) : i ∈ Sk+1} that we’ve removed has at most ∆(G) many elements. Since c is a proper coloring
of G using at most ∆(G) + 1 many colors, we conclude that χ(G) ≤ ∆(G) + 1.

Notice that it is certainly possible that χ(G) < ∆(G) + 1. For example, if G is a graph with vertex set
[n], where n is adjacent to all other vertices but there are no other edges, then ∆(G) = n− 1 but χ(G) = 2.
Thus, the above upper bound can be a bad upper bound in some cases. One may object that the greedy
coloring described in the above proof does not necessarily use ∆(G) + 1 many colors. For example, in our
example G, a greedy coloring using any ordering of the vertices only actually uses 2 colors. This is true,
but there is an even deeper problem. Although the greedy coloring does indeed give a proper coloring of G
(and leads to above inequality), using the greedy coloring on a particular ordering of the vertices may not
produce a coloring using exactly χ(G) many colors. For example, consider the graph P4 having vertex set [4]
and edge set {{1, 2}, {2, 3}, {3, 4}}. If one uses the ordering 1, 2, 3, 4 of the vertices, then indeed the greedy
coloring uses 2 colors. However, if one uses the ordering 1, 4, 2, 3 of the vertices, then the greedy coloring
uses 3 colors.
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Definition 4.60. A graph G is bipartite if it has a proper 2-coloring, i.e. if χ(G) ≤ 2. Equivalently, G is
bipartite exactly when it is possible to partition V into two disjoint sets A and B such that every edge of G
has one endpoint in A and one endpoint in B (so no edge of G has endpoints in the same set).

Theorem 4.61. Let G be a graph. The following are equivalent.

1. G is bipartite.

2. G has no cycles of odd length.

3. G has no closed walks of odd length.

Proof. • 1→ 2: We instead prove the contrapositive that ¬2→ ¬1. Suppose then that G has a cycle of
odd length. We show that G is not bipartite. Fix a closed walk

v0, e1, v1, e2, v2, . . . , vk−1, ek, vk

without repeated edges or vertices (other than v0 = vk) and such that k is odd and at least 3 (since
there are no loops in G). Since k ≥ 3 is odd, we can fix m ∈ N+ with k = 2m + 1. Suppose now
that c : V → [2] is proper coloring of G. We then must have c(v0) 6= c(v1) and c(v1) 6= c(v2), so
since the codomain of c has 2 elements, it follows that c(v0) = c(v2). A similar argument shows that
c(v2) = c(v4), and hence we conclude that c(v0) = c(v4). In general, a simple induction shows that
c(v0) = c(v2`) whenever 0 ≤ ` ≤ m. In particular, since 2m = k− 1, we conclude that c(v0) = c(vk−1).
Since vk = v0, this implies that c(vk) = c(vk−1), contradicting the fact that c is proper coloring of G.
Therefore, G is not bipartite.

• 2 → 3: We instead prove the contrapositive that ¬3 → ¬2. Suppose then G has a closed walk of odd
length. Fix an odd length closed walk of smallest possible length, say it is

v0, e1, v1, e2, v2, . . . , vk−1, ek, vk

with v0 = vk. Notice that k ≥ 3 because G has no loops. We claim that there are no repeated vertices.

– Suppose that there exists i with 0 < i < k such that v0 = vi. We then have vi = vk as well, so

v0, e1, v1, . . . , vi−1, ei, vi

and
vi, ei+1, vi+1, . . . , vk−1, ek, vk

are both closed walks. Since the sum of the lengths of these walks is k, which is odd, either i is
odd or k − i is odd. In either case, we have produced a closed walk in G of shorter odd length,
which is a contradiction.

– Suppose that there exists i, j with 0 < i < j < k and such that vi = vj . We then have that

vi, ei+1, vi+1, . . . , vj−1, ej , vj

and
v0, e1, v1, . . . , vi−1, ei, vi, ej+1, vj+1, . . . , vk−1, ek, vk

are both closed walks. Since the sum of the lengths of these walks is k, which is odd, either j − i
is odd or k − (j − i) is odd. In either case, we have produced a closed walk in G of shorter odd
length, which is a contradiction.

Both cases lead to a contradiction, so our shortest closed walk of odd length has no repeated vertices
and length at least 3. Therefore, G has a cycle of odd length by Proposition 4.30.
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• 3→ 1: Suppose that G has no closed walks of odd length. We first that each connected component of
G is bipartite. Consider an arbitrary connected component H of G. Fix an arbitrary z ∈ VH . Define
a coloring c : VH → [2] as follows. Given v ∈ VH , fix a shortest possible z, v-path in G, and define
c(v) = 1 if this path has even length, and c(v) = 2 if this path has odd length. We claim that c is a
proper coloring of H. To see this, suppose that u,w ∈ VH are adjacent and c(u) = c(w). We then have
a shortest possible z, u-path in H and a shortest possible z, w-path in H have the same parity (either
both even or both odd), so the sum of their lengths is even. Thus, if we following a shortest z, u-path,
then take then edge {u,w} and then follow a shortest z, w-path backwards, we obtain a closed walk in
G of odd length, which is a contradiction. Thus, H is bipartite.

Since each of the connected components of G is bipartite, we can fix proper two coloring cH : VH → [2]
of each connected component H of G. If we define c : VG → [2] by letting c(v) = cH(v) for the unique
connected component H containing v, then c is a proper coloring of G because two vertices in distinct
connected components are not adjacent. Therefore, G is bipartite.

We know that a graph with n vertices has at most
(
n
2

)
= n(n−1)

2 = n2−n
2 many edges. How many edges

can a bipartite graph with n vertices have? Recall that if m,n ∈ N+, then we defined Km,n to be the graph
with vertex set V = [m+ n] and edge set

E = {{i, j} : 1 ≤ i ≤ m and m+ 1 ≤ j ≤ n}.

Notice that d(u) = n −m for all u ∈ {1, 2, . . . ,m}, that d(w) = m for all w ∈ {m + 1,m + 2, . . . ,m + n},
and that Km,n has exactly mn many edges. Each Km,n is bipartite (by coloring the vertices {1, 2, . . . ,m}
one color and the vertices {m+ 1,m+ 2, . . . , n} the other), and has all possible edges between the two sets
corresponding to the color classes. This is why we called Km,n a complete bipartite graph.

With this in mind, suppose that G is a bipartite graph with n vertices. Suppose that we fix a proper
2-coloring of G. If one of the color classes has m many vertices, then then other must have n − m many
vertices. Thus, the maximum number of edges that G can have is the number of edges in Km,n−m, which
we know is m(n −m). In order to determine the maximum number of edges that a bipartite graph with n
vertices can have, we need only figure out that largest possible value of m(n−m) as let m ∈ N vary between
0 ≤ m ≤ n.

Suppose that n ∈ N+. If n is even and we write n = 2m, then Km,m is a bipartite graph with m2 =

(n
2 )2 = n2

4 many edges. If n is odd and we write n = 2m+ 1, then Km+1,m is a bipartite graph with

m(m+ 1) =
n− 1

2
· n+ 1

2
=
n2 − 1

4

many edges. Thus, in either case, we get ⌊
n2

4

⌋
many edges. We now argue that this is best possible

Theorem 4.62. Let n ∈ N+.

• If n is even, say n = 2k with k ∈ N+, then the maximum number of edges that a bipartite graph with
n vertices can have is

n2

4
= k2.

• If n is odd, say n = 2k+ 1 with m ∈ N, then the maximum number of edges that a bipartite graph with
n vertices can have is

n2 − 1

4
= k2 + k.
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Thus, in either case, the maximum number of edges that a bipartite graph with n vertices can have is bn
2

4 c.

Proof. Let G be a bipartite graph with n vertices. Since G is bipartite, we can fix a proper 2-coloring of the
vertices of G. Let A be the set of vertices given one color, and and let B be the set of vertices given the
other color. Let m = |A|, so |B| = n−m. Each vertex in A is then adjacent to at most |B| many vertices,
so the number of edges in G is at most |A| · |B| = m(n −m). Thus, if we determine the maximum values
of m(n −m) as let m vary in the set {0, 1, 2, . . . , n}, then we will have a bound on the number of edges in
any bipartite graph. In order to maximize this discrete function of m, we examine the continuous (indeed
differentiable) function f : R→ R given by

f(x) = x(n− x) = nx− x2

We want to maximize f(x) on the closed interval [0, n]. We have

f ′(x) = n− 2x

so f ′(x) > 0 on [0, n2 ] and f ′(x) < 0 on [n2 , n]. Thus, f(x) is increasing on [0, n2 ] and decreasing on on [n2 , n].
Now if n is even, then n

2 ∈ N with 0 ≤ n
2 ≤ n, and so the maximum occurs at n

2 with

f
(n

2

)
=
n

2
· n

2
=
n2

4

Suppose that n is odd. Although the maximum of f(x) occurs at n
2 , this is not a natural number. However,

n−1
2 is that largest natural number in the closed interval [0, n2 ], so as f(x) is increasing on [0, n2 ], we conclude

that the largest value of f at a natural number in the interval [0, n2 ] is

f

(
n− 1

2

)
=
n− 1

2
· n+ 1

2

=
n2 − 1

4
.

Similarly, n+1
2 is that smallest natural number in the closed interval [n2 , n], so as f(x) is decreasing on [n2 , n],

we conclude that the largest value of f at a natural number in the interval [n2 , n] is

f

(
n+ 1

2

)
=
n+ 1

2
· n− 1

2

=
n2 − 1

4
.

Thus, the maximum value of m(n−m) across all m in the set {0, 1, 2, . . . , n} equals n2−1
4 .

Since the previous theorem gives an upper bound on the number of the number of edges in a bipartite
graph, it also gives an upper bound on the number of edges in a graph that does not contain an odd cycle
(so a 3-cycle, a 5-cycle, etc.). Somewhat surprisingly, if want to determine the maximum number of edges
in a graph that does not contain a triangle (i.e. a 3-cycle), we obtain the exact same upper bound. To prove
this, we use a different inductive approach.

Theorem 4.63. We have the following.

1. If k ≥ 2 and G is a graph with n = 2k vertices and at least k2 + 1 many edges, then G contains a
triangle.

2. If k ≥ 1 and G is a graph with n = 2k+ 1 vertices and at least k2 + k+ 1 many edges, then G contains
a triangle.
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Proof. 1. We prove this by induction on k.

• Base Case: Suppose that k = 2. Let G be a graph with 4 = 2 · 2 vertices and at least 22 + 1 = 5
edges. We know that G is not bipartite by the previous theorem, so it has an odd cycle. Such a
cycle must have length 3 (because there are only 4 vertices), so G contains a triangle.

• Inductive Step: Suppose that the statement is true for a fixed k ≥ 2. Let G be a graph with
2(k+ 1) = 2k+ 2 many vertices and at least (k+ 1)2 + 1 many edges. Fix an edge in G, and call
its endpoints u and w. If u and w have a common neighbor in G, then we have a triangle and we
are done. Suppose then that u and w do not have a common height in G. For each of the other
2k vertices, at most one of u and w is adjacent to it, so there are at most 2k many other edges
incident to at least one of u or w, not counting the edge {u,w} itself. Thus, if we delete the two
vertices u and w to form G−{u, v}, then the resulting graph has at most 2k+1 many fewer edges
than G. It follows that G− {u, v} has at least

(k + 1)2 + 1− (2k + 1) = k2 + 2k + 1 + 1− 2k − 1

= k2 + 1

many edges. By induction, G− {u, v} has a triangle, so G does.

The result follows by induction.

2. We also prove this by induction on k.

• Base Case: Suppose that k = 1. Let G be a graph with 3 = 2 · 1 + 1 vertices and at least
1 · 2 + 1 = 3 edges. We then have that G is a triangle, so we are done.

• Inductive Step: Suppose that the statement is true for a fixed k ≥ 2. Let G be a graph with
2(k + 1) + 1 = 2k + 3 many vertices and at least (k + 1)(k + 2) + 1 many edges. Fix an edge in
G, and call its endpoints u and w. If u and w have a common neighbor in G, then we have a
triangle and we are done. Suppose then that u and w do not have a common height in G. For
each of the other 2k + 1 vertices, at most one of u and w is adjacent to it, so there are at most
2k + 1 many other edges incident to one of u or w, not counting {u,w} itself. Thus, if we delete
the two vertices u and w to form G − {u, v}, then the resulting graph has at most 2k + 2 many
fewer edges than G. It follows that G− {u, v} has at least

(k + 1)(k + 2) + 1− (2k + 2) = k2 + 3k + 2 + 1− 2k − 2

= k2 + k + 1

= k(k + 1) + 1

many edges. By induction, G− {u, v} has a triangle, so G does.

The result follows by induction.

4.6 Matchings

Definition 4.64. A matching in a graph is a set of edges such that no two distinct edges have a common
endpoint.

We will often be interested in matchings in bipartite graphs. The idea is that one side represents people
and the other jobs/tasks. Historically, this was also viewed as men and women.

Definition 4.65. Let G be a graph and let M be a matching in G.

120



• A set S ⊆ VG. We say that M saturates S if every element of S is an endpoint of some edge in M .

• We say that M is a perfect matching if M saturates V , i.e. every vertex in G appears as an endpoint
of some edge in M .

• We say that M is a maximal matching in G if M ∪ {e} is not a matching for every edge e /∈ E\M .

• We say that M is a maximum matching if it has at least as many edges as any other matching, i.e. if
|N | ≤ |M | for all matchings N of G.

Notice that any maximum matching in a graph G is a maximal matching. However, the converse is
not true. For example, consider the graph P4, so the vertex set is [4] = {1, 2, 3, 4} and the edge set is
{{1, 2}, {2, 3}, {3, 4}}. Notice that M = {{2, 3}} is a maximal matching, but it is not a maximum matching
because M ′ = {{1, 2}, {3, 4}} is a matching with strictly more elements. Although it is relatively easy to
determine if a given matching is a maximal matching (simply look through all of the edges in turn and
check if each of their endpoints are saturated by M), it seems harder to determine if a matching is a
maximum matching. The following definition will be essential to help us efficiently determine if a matching
is a maximum matching.

Definition 4.66. Let M be a matching in a graph G.

• An M -alternating path in G is a path

v0, e1, v1, e2, v2, . . . , vk−1, ek, vk

in G where the ei alternate between elements of M and element of E\M (i.e. either e1, e3, e5, . . . are
all elements of M and e2, e4, e6, . . . are all elements of E\M , or e1, e3, e5, . . . are all elements of E\M
and e2, e4, e6, . . . are all elements of M).

• An M -augmenting path in G is an M -alternating path

v0, e1, v1, e2, v2, . . . , vk−1, ek, vk

in G where k ≥ 1 and both v0 and vk are M -unsaturated (i.e. not the endpoint of any edge in M).

Notice that in an M -augmenting path, the first and last edges e1 and ek must both be elements of E\M .
However, an M -augmenting path is more than just an M -alternating path with this property because we
require that no edge of M is incident to either v0 or vk, not just e1 and ek themselves. Before establishing
our major theorem about M -augmenting paths, we first prove a useful lemma.

Lemma 4.67. Let G be a finite graph with d(v) ≤ 2 for all v ∈ G. We then have that every connected
component of G is either a path or a cycle.

Proof. Let H be an arbitrary connected component of G. Since G is finite, we know that H is finite, so we
can fix a longest possible path

v0, e1, v1, e2, v2, . . . , vk−1, ek, vk

in G (note that possibly k = 0 and we have a trivial path). Since paths are trails, we know that the edges
in this path are all distinct. For each i with 1 ≤ i ≤ n − 1, we have that vi is incident to the two distinct
edges ei and ei+1. Since d(vi) ≤ 2 for each i with 1 ≤ i ≤ k − 1, it follows that vi is incident to no edges of
G other than ei or ei+1. We now have a few cases.

• Case 1: Suppose that v0 and vk are incident to no edges besides e1 and ek respectively. We then have
H consists of the vertices and edges on this path, and no other vertices/edges, so H is a path.
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• Case 2: Suppose then v0 is incident to another edge f . Notice that the other endpoint of f must be
some vi because otherwise we could extend our path to a longer one in H. Now this other endpoint
can not be a vi with 1 ≤ i ≤ k − 1 from above, so the other endpoint must be vk. We then have that

v0, e1, v1, e2, v2, . . . , vk−1, ek, vk, f, v0

is a closed walk without repeated vertices/edges. Furthermore, no other edge can be incident to either
v0 or vk because d(v0) ≤ 2 and d(vk) ≤ 2. We now have a cycle in H, and furthermore no other vertices
or edges can be in H. Therefore, H is a cycle.

• Case 3: Suppose then vk is incident to another edge f . Then following the argument in Case 2, the
other endpoint of f must be v0, and we conclude that H is a cycle.

We are now ready to prove our fundamental theorem about augmenting paths.

Theorem 4.68. Let M be a matching in a finite graph G. The following are equivalent.

1. M is a maximum matching.

2. There is no M -augmenting path in G.

Proof. We prove the contrapositive of each direction, so we show that M is not a maximum matching if and
only if there exists an M -augmenting path in G.

Suppose first that there does exist an M -augmenting path in G, say it is

v0, e1, v1, e2, v2, . . . , vk−1, ek, vk

with k ≥ 1. Since v0 and vk are both M -unsaturated, we know that e1 ∈ E\M and ek /∈ E\M . Since this
path is M -alternating (because it is M -augmenting), we must have that ei ∈ E\M for all odd i and ei ∈M
for all even i. In particular, it must be the case that k is odd. Let

M ′ = (M\{ei : i is even}) ∪ {ei : i is odd}

Notice that if 1 ≤ i ≤ k − 1, then vi is incident to a unique edge in M ′ because it is incident to a unique
edge of M . Also, since v0 and vk are both M -unsaturated, they are each incident to a unique edge in M ′.
Finally, for any vertex u not equal to any vi, we have that u is incident to at most one edge in M ′ because
it is incident to at most one edge in M . It follows that M ′ is matching in G. Now since k is odd, we have
that |M ′| = |M |+ 1, so M ′ is matching in G with more elements than M . Therefore, M is not a maximum
matching.

Suppose conversely that M is not a maximum matching. Fix a maximum matching M ′ in G, and notice
that |M | < |M ′|. Consider the subgraph H of G with vertex set VH = VG and edge set the symmetric
difference EH = M∆M ′, i.e. EH = (M\M ′) ∪ (M ′\M). Thus, an edge e ∈ EG appears in EH when it is in
exactly one of M or M ′. Notice that since |M ′| > |M |, we have

|M ′\M | > |M\M ′|.

For any v ∈ VH , we know that v is incident to at most one edge in M and at most one edge in M ′, so
we have that dH(v) ≤ 2 for all v ∈ VH . Thus, by Lemma 4.67, each connected component of H is either
a path or a cycle. Now any cycle in H must alternate edges between elements of M\M ′ and elements of
M ′\M because no vertex is incident two edges in M and no vertex is incident to edges in M ′. Hence, each
connected component in H that is a cycle has even length and an equal number of edges in both M\M ′
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and M ′\M . Therefore, since |M ′\M | > |M\M ′|, there must exist a connected component in H that is path
with strictly more edges in M ′\M than in M\M ′. Fix such a path

v0, e1, v1, e2, v2, . . . , vk−1, ek, vk

Since each vertex is incident to at most edge of M and at most one edge of M ′, it follows that the ei alternate
between edges of M ′\M and edges of M\M ′. Furthermore, since this path has strictly more edges in M ′\M
than in M\M ′, we must have e1, ek ∈ M ′\M . Thus, our path is an M -alternating path with e1, ek /∈ M .
Moreover, both v0 and vk must be M -unsaturated, because if either was incident to an edge in M , that edge
would be in M\M ′ (since it is not e1 and not ek), which implies that it would appear in H, contradicting
the fact that our path is a component in H. Therefore, we have shown the existence of an M -augmenting
path in G.

In many cases of applied interest, we are looking for matchings in bipartite graphs. Suppose then that
G is bipartite graph. Fix a proper 2-coloring of G, and let X and Y be the corresponding color classes. We
want to a simple necessary and sufficient condition for when there is a matching G that saturates X.

Definition 4.69. Let G be graph. Given a set T ⊆ V , we define

N(T ) = {v ∈ V : v is adjacent to some element of T}

In other words, N(T ) is the set of neighbors of elements of T .

Theorem 4.70 (Hall’s Marriage Theorem). Let G be a finite bipartite graph. Fix a proper 2-coloring of G,
and let X and T be the corresponding color classes. There exists a matching of G that saturates X if and
only if |T | ≤ |N(T )| for all T ⊆ X.

Proof. Suppose first that there exists a matching of G that saturates X, and fix such a matching M . Let
T ⊆ X be arbitrary. Since M saturates X and T ⊆ X, we can define a function f : T → N(T ) by letting
f(x) be the unique vertex that x is matched to in M . Since M is a matching, this function is injective, so
|T | ≤ |N(T )|.

Suppose conversely that there does not exist a matching of G that saturates X. We build a set T ⊆ X
with |T | > |N(T )|. First, fix a maximum matching M of G. Now M does not saturate X by assumption, so
we can fix an a ∈ X that is M -unsaturated. Consider the set of all M -alternating paths whose first vertex
is a. Let B be the set of all endpoints of such paths that are elements of X, i.e.

B = {x ∈ X : There exists an M -alternating a, x-path in G}.

Similarly, let C be the set of all endpoints of such paths that are elements of Y , so

C = {y ∈ Y : There exists an M -alternating a, y-path in G}.

Thus, B ⊆ X, C ⊆ Y , and a ∈ B (because the trivial path of just a is an M -alternating path). We have the
following:

1. Every element of B\{a} is M -saturated and its matched partner is in C: Let b ∈ B\{a} be arbitrary.
By definition of B, we can fix an M -alternating a, b-path P in G. Notice that P has even length of at
least 2 because G is bipartite, a, b ∈ X, and b 6= a. Since the edges of P alternate between elements of
E\M and M , and since P starts with an edge in E\M (because a is M -unsaturated), it follows that
the last edge of P is an element of M . Thus, b is M -saturated. Furthermore, the penultimate vertex
of P is matched to b, is an element of Y , and is the endpoint of the M -alternating path starting with
a that is obtained by deleting the last vertex and edge of P . Therefore, the matched partner of b is an
element of C.
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2. Every element of C is M -saturated and its matched partner is in B\{a}: Let c ∈ C be arbitrary. By
definition of C, we can fix an M -alternating a, c-path P in G. Notice that P has odd length because
G is bipartite, a ∈ X, and c ∈ Y . Since the edges of P alternate between elements of E\M and M ,
and since P starts with an edge in E\M (because a is M -unsaturated), it follows that the last edge of
this path is an element of E\M . Furthermore, since M is a maximum matching, we know that P can
not be an M -augmenting path by Theorem 4.68. Now P is M -alternating, and a is M -unsaturated,
so it must be the case that c is M -saturated. Let b ∈ X be the matched partner of c. Notice that b
does not occur on P because c does not occur before the last vertex, and the last edge is an element of
E\M . Thus, if we add on the edge {c, b} and the vertex b to the end of P , we obtain an M -alternating
a, b-path in G, so b ∈ B. Also, notice that b 6= a because a is M -unsaturated. Therefore, the matched
parter of c is an element of B\{a}.

3. |C| = |B\{a}|: By 1, we can define a function from B\{a} → C sending an element to its matched
partner. This function is injective because M is a matching, so |B\{a}| ≤ |C|. Similarly, |C| ≤ |B\{a}|
by 2. It follows that |C| = |B\{a}|

4. N(B) ⊆ C: Let y ∈ N(B) be arbitrary. Since y ∈ N(B), we can fix b ∈ B such that b is adjacent to
y. Since b ∈ B, we can fix an M -alternating a, b-path P in G. If y is a vertex on P , then by cutting
off P at y we obtain an M -alternating a, y-path in G, so y ∈ C. Suppose then that y is not a vertex
on P . As in 1, notice that P has even length and the last edge of P is an element of M . Since y is not
a vertex on P and we know that the penultimate vertex of P is the matched partner of b, it follows
that {b, y} /∈ M . Thus, if we add on the edge {b, y} and the vertex y to the end of P , we obtain an
M -alternating a, y-path in G, so y ∈ C. It follows that N(B) ⊆ C.

Combining 3 and 4, we have
|N(B)| ≤ |C| = |B\{a}| = |B| − 1

Therefore, we may let T = B.

Instead of thinking about finding a large matching, we now move on to consider finding a “good” matching
in a certain sense. Suppose that we have two groups of n vertices and each one side has a ordering of the other
in terms of preference. Thus, we have the complete bipartite graph Kn,n where the vertex set is partitioned
into two sets U (think of uppercase letters) and L (think of lowercase letters) of size n such that every vertex
of U is adjacent to every vertex of L. Suppose furthermore that for each A ∈ U , we have a permutation of L
which we can think of as an ordering <A of L. Similarly, for each x ∈ L, we have a permutation of Y which
we can think of as an ordering <x of U . These orderings codify the preferences of the vertices. For example,
if U = {A,B,C,D} and L = {w, x, y, z}, we may have the following lists of preferences:

A B C D

x w z z
y x w w
z y y x
w z x y

w x y z

C C C B
B A B C
A D A A
D B D D

In this setting, there are of course many perfect matchings (in fact there are n! many of them). However,
we want to find a “good” matching. There are several ways one could define a notion of “good” (as many
vertices as possible are paired with their first choice, as few vertices as possible are paired with their last
choice, minimizing the sum of the ranks of the matched pairs, etc.), but we opt for a notion that tries to
avoid “rogue” pairs.

Definition 4.71. A matching is stable if there do not exist matched pairs {x,A}, {y,B} ∈ M (where
A,B ∈ U and x, y ∈ L) such that B <y A and x <A y, i.e. such that y prefers A to B and also A prefers y
to x.
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If we think of our matching as provided marriages between uppercase people U and lowercase people L,
then a stable matching is one where there does not exist two people who would prefer each other to their
current spouses, thus warding off infidelity. Does every list of preferences have a stable matching? If so,
is it unique? Also, how could we find one? There is a clever algorithm to form a matching that is useful
in answering all of these questions. The idea is to pick one side and have it do a sequence of proposals to
the other side. Say that we have the L vertices do the proposals to the U vertices. At the first stage, each
L vertex approaches their first choice of a vertex U and proposes. Each U vertex that now has a proposal
tells their favorite current suitor to come back the next round, and rejects the others telling them to never
come back. We call the resulting pair engaged. In the next round, each engaged element of L returns to
their engaged partner, and element of L that is not currently engaged proposes to their highest choice of
a vertex in U that has not yet rejected them and proposes. At this point, each U vertex (even if they are
currently engaged) that now has a proposal tells their favorite current suitor/engaged partner to come back
the next round, and also rejects the others (possibly including the current engaged partner) telling them to
never come back. As before, we call the resulting pairs engaged. We continue this process until we reach
a round where everybody is engaged, and we take this matching. For example, consider the above lists of
preferences:

A B C D

x w z z
y x w w
z y y x
w z x y

w x y z

C C C B
B A B C
A D A A
D B D D

With the elements of L proposing, we get the following run of the algorithm (where bold indicates the
engaged element of L):

Round A B C D

1 z w, x, y
2 x y, z w
3 x y w, z
4 x w, y z
5 x, y w z
6 x w z y

Thus, we get the matching
{w,B} {x,A} {y,D} {z, C}

We can also switch and have elements of U proposing, giving the following run of the algorithm:

Round w x y z

1 B A C, D
2 B, D A C
3 B A, D C
4 B A D C

Notice that this results in the same matching. Of course, we now have a couple of questions. First, does this
procedure always terminate in a matching? For example, is it possible that an element of the proposing set
is rejected by everyone? If we know that the process does terminate in a matching, then the big question
is the resulting matching stable? We start with the termination question. Suppose that the elements of L
propose to the elements of U . By definition of the algorithm, we have the following properties:
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1. If x ∈ L is rejected by A ∈ U , then x never proposes to A again.

2. If A ∈ U is engaged to an element of L at stage k, then A is engaged to some (possibly different)
element of L at all later stages.

Furthermore, building on these facts, a closer look at the algorithm reveals that we also have the following
properties.

3. If we fix x ∈ L, then sequence of elements of U that x proposes to each day is decreasing (not necessarily
strictly) through its preference list and never skips anybody on their list.

4. If we fix A ∈ U , the sequence of elements of L that A is engaged to might start out empty, but then it
is increasing (not necessarily strictly) though its preference list, and it might skip people on the list.

Now if we ever reach a stage where each element of U has a current proposal by some element of L, then we
stop the algorithm and take the corresponding matching. With this in mind, we first argue that no element
of L can be rejected by every element of U . To see this, suppose that we are at a stage where a given x ∈ L
gets rejected by the (n − 1)st person on their list. By property 3 above, it follows that x has now been
rejected by each of the first n − 1 elements of their list. Now using property 2, it follows that on the next
day, those n− 1 people will each have a suitor, and then x will propose to the nth person on their list. Thus,
each of the n elements of U have a suitor, and since L also has n elements, it follows that each element of
U has a unique suitor. Thus, the algorithm must terminate in a matching. Furthermore, since at least one
rejection happens at each stage that does not produce the final matching, the above argument shows that
algorithm terminates in at most n(n − 2) + 2 many steps (although this can be improved a bit). We now
prove the algorithm produces a stable matching.

Theorem 4.72. Suppose that the elements of L propose to the elements of U . The matching produced by
the algorithm is stable.

Proof. Suppose that the matching produces pairs {x,A} and {y,B}. Suppose that y prefers A to B. Then
at some stage, y must have proposed to A by property 3 above. Since y is not paired with A, it follows
that A must have rejected y at some (possibly later) stage in favor of somebody that A preferred. Since the
sequence of engagements of A only increases by property 4, it follows that A prefers x to y.

A B C D

x w z z
y x w w
z z y x
w y x y

w x y z

C D C B
B A B C
A C A A
D B D D

With the lowercase letters proposing, we get the following run:

Round A B C D

1 z w, y x
2 y, z w x
3 y z w x

Thus, we get the matching
{w,C} {x,D} {y,A} {z,B}

If we run it in the other order, we get

126



Round w x y z

1 B A C, D
2 B, D A C
3 B A,D C
4 B D A C

Thus, we get the matching
{w,B} {x,D} {y,A} {z, C}

Both of these matchings are stable by the above argument. In particular, there can be more than stable
matching. This gives the questions of whether there is a “best” stable matching.

Definition 4.73. Let x ∈ L and let A ∈ U .

• We say that A is feasible for x if {x,A} occurs in some stable matching. Similarly, we say that x is
feasible for A if {x,A} occurs in some stable matching.

• We say that A is optimal for x if A is the highest element of x’s preference list that is feasible for
x. Similarly, we say that x is optimal for A if x is the highest element of A’s preference list that is
feasible for A.

Theorem 4.74. If L does the proposing, then for all x ∈ L, the partner produces by the algorithm is optimal
for x.

Proof. We show that if x is rejected by A at some stage, then A is not feasible for x. We do this by induction
on the stage of the construction.

• Suppose that A rejects x at the first stage. We need to show that A is not feasible for x. Let M be an
arbitrary matching containing {x,A}. Since A rejects x at the first stage, we know that A is engaged
to some y at the end of the first stage and that A prefers y to x. Fix B such that {y,B} ∈ M . We
then have that A prefers y to x (from above) and y prefers A to B (since A was y’s first choice as this
is the first round), so M is not stable. Thus, any matching containing {x,A} is not stable, so A is not
feasible for x.

• Suppose now that we are at stage k, and we know that any z ∈ L that has been rejected by some
C ∈ U at a stage before k, then C is not feasible for that z. Suppose now that A rejects x at stage
k. We need to show that A is not feasible for x. Let M be an arbitrary matching containing {x,A}.
Since A rejects x at the the stage k, we know that A is engaged to some y at the end of stage k and
that A prefers y to x. Fix B such that {y,B} ∈ M . If B is not feasible for y, then M is not stable
definition. Suppose then that B is feasible for y. Since y is engaged to A at stage k, we know that y
was rejected by all elements of U above A in earlier rounds, and hence no element above A is feasible
for y by induction. Since B is feasible for y, we must have that y prefers A to B. Combining this with
the fact that A prefers y to x (from above), we conclude that M is not stable. Thus, any matching
containing {x,A} is not stable, so A is not feasible for x.

We have shown that if x is rejected by A at some stage, then A is not feasible for x. Since x is matched with
the highest ranked element of U that does not reject x, it follows that the partner produced for x is optimal
for x.

Thus far, we’ve been working in the graph Kn,n where each vertex on one side ranks the elements of the
others. Suppose instead that we work in K2n where each vertex ranks all other vertices. Think about this
as taking a group of 2n people and trying to pair off roommates. Although this problem superficially seems
completely analogue, the lack of two “sides” changes the situation dramatically. In fact, there may not be a
stable matching! For example, suppose that n = 2, so we have 4 people who rank the other 3 as follows:
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A B C D

B C A A
C A B B
D D D C

To see that there is no stable matching, simply look at who is matched with D (who is the lowest ranked
vertex for all others).

• If we match {A,D}, then we must match {B,C}, and then A and C form an unstable pair.

• If we match {B,D}, then we must match {A,C}, and then A and B form an unstable pair.

• If we match {C,D}, then we must match {A,B}, and then B and C form an unstable pair.

Therefore, this is no stable matching.

4.7 Planar Graphs

Definition 4.75. Let G be a graph. A planar embedding of G is way to draw G in the plane such that all
vertices are represented by points, all edges are represented by continuous paths, and no two distinct edges
cross (except at the endpoints). G is planar if there exists a planar embedding of G.

One can make this definition more formal be representing edges by continuous functions g : [0, 1] → R2

such that g(0) is one endpoint and g(1) is the other endpoint. A careful treatment of this material relies
on some important properties of continuous functions, and hence relies on some analysis and topology. We
(obviously) don’t have those tools, so we will proceed a bit more intuitively. However, rest assured that all
of these results can be made very precise with the appropriate tools.

Definition 4.76. Given a planar embedding of a graph G, we divide the plane (minus the image of the
embedding) into regions that we call faces.

Theorem 4.77 (Euler’s Formula). Let G be a planar embedding of a connected planar multigraph. If this
embedding has n vertices, m edges, and c faces, then n−m+ c = 2.

Proof. The proof is by induction on m.

• Base Case: Suppose that m = 0. Since G is connected, we must have n = 1 and hence c = 1 as well.
Notice that 2− 1 + 1 = 2.

• Inductive Step: Suppose the result is true for all connected planar multigraphs with m edges. Let G
be a connected planar multigraph with n vertices, m+ 1 many edges, and c faces. We have two cases.

– Case 1: G has no cycles, so G is a tree. We then have m = n − 1 by Theorem 4.41 and c = 1
(because there are no cycles), so

n−m+ c = n− (n− 1) + 1

= 2.

– Case 2: G has a cycle. Fix an edge e in a cycle, and let G′ = G− e. Notice that G′ is a connected
planar graph (using Proposition 4.33) with n vertices and m edges. Furthermore, G′ has c − 1
many faces because the faces on other side of that edge become one. By induction, we have

n−m+ (c− 1) = 2.

Therefore
n− (m+ 1) + c = 2

and hence the statement is true for G.
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The result follows by induction.

Definition 4.78. Suppose we have a planar embedding of a connected multigraph G. Given a face f ∈ F ,
we define the length of f , denoted `(F ) to be the length of the walk which traverses the boundary of the face.
Notice that if F is on both “sides” of an edge, then that edge is counted twice.

Proposition 4.79. If G is a connected planar multigraph with m edges, then
∑

f∈F `(f) = 2m.

Proof. Every edge has 2 “sides” so is counted twice on the left.

Proposition 4.80. Let G be a connected planar graph with n vertices and m edges. If n ≥ 3, then m ≤ 3n−6.

Proof. Suppose that n ≥ 3. For each face f ∈ F , we have `(f) ≥ 3 because G is a connected graph with at
least 3 vertices. Thus, the sum on the left above is at least 3c and so

2m =
∑
f∈F

`(f) ≥ 3c

It follows that c ≤ 2
3 ·m. Now using Euler’s Theorem, we have

m+ 2 = n+ c

≤ n+
2

3
·m

It follows that
1

3
·m ≤ n− 2

and hence
m ≤ 3n− 6.

Corollary 4.81. K5 is not planar.

Proof. Notice that K5 has 5 vertices and
(
5
2

)
= 10 edges. Since 3 · 5− 6 = 9, it follows from Proposition 4.80

that K5 is not planar.

Proposition 4.82. Let G be a connected planar graph with n vertices, m edges, and no triangles (i.e. no
3-cycles). If n ≥ 3, then m ≤ 2n− 4.

Proof. For each face, we have at least 4 edges on its boundary. Thus, the sum on the left above is at least
4c and so 2m ≥ 4c. It follows that c ≤ 1

2 ·m. Now we have

m+ 2 = n+ c

≤ n+
1

2
·m

It follows that
1

2
·m ≤ n− 2

and hence
m ≤ 2n− 4.
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Corollary 4.83. K3,3 is not planar.

Proof. Notice that K3,3 is bipartite so has no triangles. Now K3,3 has 6 vertices and 3 · 3 = 9 edges. Since
2n− 4 = 2 · 6− 4 = 8, it follows from Proposition 4.82 that K3,3 is not planar.

Proposition 4.84. If G is a finite planar graph, then there exists v ∈ V with d(v) ≤ 5.

Proof. Suppose that G is finite planar graph with n vertices and m edges. If n ≤ 2, then this result is trivial.
Suppose then that n ≥ 3. If d(v) ≥ 6 for all v ∈ V , then

2m =
∑
v∈V

d(v) ≥ 6n

so m ≥ 3n. However, this contradicts Proposition 4.80 (which holds even if G is not connected by Homework
16). Therefore, there must exist v ∈ V with d(v) ≤ 5.

Proposition 4.85. χ(G) ≤ 6 for every finite planar graph G.

Proof. The proof is by induction on the number of vertices of G. Notice that if G has one vertex, then the
result is trivial. Suppose then that χ(G) ≤ 6 for all finite planar graphs G with n vertices. Consider an
arbitrary finite planar graph with n+ 1 vertices. By Proposition 4.84, we can fix a vertex v with d(v) ≤ 5.
Now the graph G− v is planar and has n vertices, so by induction we know that χ(G− v) ≤ 6. Fix a proper
6-coloring c : V \{v} → [6] of G− v. Now v has at most 5 neighbors in G, so we there exists i ∈ [6] such that
c(w) 6= i for all w adjacent to v. Thus, if we extend c by letting c(v) = i for some such i, then we have a
proper coloring of G using at most 6 colors. The result follows by induction.

In fact, with a little more work, we can prove the following.

Theorem 4.86. χ(G) ≤ 5 for every planar graph G.

Proof. The proof is by induction on the number of vertices of G. Notice that if G has one vertex, then the
result is trivial. Suppose then that χ(G) ≤ 6 for all finite planar graphs G with n vertices. Consider an
arbitrary finite planar graph with n+ 1 vertices. By Proposition 4.84, we can fix a vertex v with d(v) ≤ 5.
Now the graph G− v is planar and has n vertices, so by induction we know that χ(G− v) ≤ 6. Fix a proper
6-coloring c : V \{v} → [5] of G − v. Now if there is an i ∈ [5] such that c(w) 6= i for all w adjacent to v,
then we obtain a proper 5-coloring of G as in the previous proposition.

Suppose then that all 5 colors occur on the neighbors of v. In some planar embedding of G, call the
neighbors w1, w2, w3, w4, w5 in a clockwise circle around v. Consider the subgraph H1,3 of G − v induced
by the vertices currently colored 1 and 3. If w1 and w3 are in different connected components of H1,3, then
we can switch the colors 1 and 3 in the connected component of w1 (so in particular w1 is now colored 3),
which then allows us to obtain a proper coloring of G with 5 colors by coloring w with 1.

Suppose then that w1 and w3 are in the same connected component of H1,3. We can then fix a w1, w3-path
P in H1,3 of vertices alternating in color between 1 and 3. We now try the same strategy with w2 and w4 by
considering the subgraph H2,4 of G− v induced by the vertices currently colored 2 and 4. Notice that we w2

and w4 can not be in the same connected component of H2,4, because otherwise we would have w2, w4-path
in H2,4 of vertices alternating in color between 2 and 4, which would have to cross P , contradicting planarity
(notice that the paths can’t cross at a vertex because the vertices on the paths have different colors). Since
w2 and w4 are not in the same connected component of H2,4, we can switch the colors 2 and 4 in the
connected component of w2 (so in particular w2 is now colored 4), which then allows us to obtain a proper
coloring of G with 5 colors by coloring v with 2. The result follows by induction.

In fact, the following much (much) harder result is true.

Theorem 4.87 (Four Color Theorem, Appel-Haken). χ(G) ≤ 4 for every planar graph G.
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We now examine convex regular polyhedra, which are 3-dimensional shapes each of whose faces is a
convex polygon with the same number of edges, and such that the number of faces that meet at any point is
equal throughout. These convex regular polyhedra can be viewed as graphs embedded on a sphere, but notice
that a graph is can be embedded on the plane exactly when it can be embedded on the sphere. One can
see this by picking a point on the sphere (not hit by any vertex/edge) and doing a stereographic projection.
Thus, we can study these polyhedra by studying planar graphs such that d(v) is constant for all v ∈ V and
`(f) is constant for all f ∈ F . Let d be the common degree of vertices, and let ` be the common length of
faces. Notice that d ≥ 3 and ` ≥ 3. We also have

dn = 2m = `c

Now using Euler’s Theorem, we conclude that

2 = n−m+ c

=
2m

d
−m+

2m

`

and hence
1

d
+

1

`
=

1

2
+

1

m

Since 1
m > 0, it follows that

1

d
+

1

`
>

1

2

Now we know that d ≥ 3, so if ` ≥ 6, then we would have

1

d
+

1

`
≤ 1

3
+

1

6
=

1

2

which is a contradiction. Similarly, we know that ` ≥ 3, so if d ≥ 6, then we would have

1

d
+

1

`
≤ 1

6
+

1

3
=

1

2

which is a contradiction. Therefore, we must have 3 ≤ d ≤ 5 and 3 ≤ ` ≤ 4. Furthermore, we can not have
both d ≥ 4 and ` ≥ 4 because this would imply that

1

d
+

1

`
≤ 1

4
+

1

4
=

1

2

which is a contradiction. This gives the following possible pairs (d, `):

(3, 3) (3, 4) (3, 5) (4, 3) (5, 3)

Now from d and `, we can compute m using the equation

1

d
+

1

`
=

1

2
+

1

m

Furthermore, once we have m as well, then we can determine n and c from the equation

dn = 2m = `c.

Doing all the calcuations, we conclude the following:

• d = 3 and ` = 3: We then have m = 6, so n = 4 and c = 4.
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• d = 3 and ` = 4: We then have m = 12, so n = 8 and c = 6.

• d = 3 and ` = 5: We then have m = 30, so n = 20 and c = 12.

• d = 4 and ` = 3: We then have m = 12, so n = 6 and c = 8.

• d = 5 and ` = 3: We then have m = 30, so n = 12 and c = 20.

d ` m n c poly

3 3 6 4 4 tetrahedron
3 4 12 8 6 cube
3 5 30 20 12 dodecahedron
4 3 12 6 8 octahedron
5 3 30 12 20 icosahedron

4.8 Ramsey Theory

We begin with the following result.

Proposition 4.88. Given an arbitrary coloring of the edges of K6 with two colors, there always exists a
triangle such that all edges have the same color.

Proof. Consider an arbitrary coloring of the edges of K6 with two colors. Call the colors red and blue. Pick
an arbitrary vertex u. Since u is incident to 5 total edges, either u is incident to at least 3 red edges or u is
incident to at least 3 blue edges. We now have two cases.

• Case 1: Suppose that u is incident to at least 3 red edges. Fix 3 such edges, and call the other endpoints
of these edges w1, w2, and w3. Now if the 3 edges with endpoints amongst the wi are all blue, then
w1, w2, and w3 form a blue triangle. On the other hand, if any edge with endpoints wi and wj where
i 6= j is red, then we obtain a red triangle by looking at the vertices u, wi, and wj .

• Case 2: Suppose that u is incident to at least 3 blue edges. Fix 3 such edges, and call the other
endpoints of these edges w1, w2, and w3. Now if the 3 edges with endpoints amongst the wi are all
red, then w1, w2, and w3 form a red triangle. On the other hand, if any edge with endpoints wi and
wj where i 6= j is blue, then we obtain a blue triangle by looking at the vertices u, wi, and wj .

Thus, we always obtain either a red triangle or a blue triangle (or possibly both).

Is 6 best possible? In other words, is it true that every coloring of the edges of K6 with two colors always
has a monochromatic (i.e. either all red or all blue) triangle? Or is there a coloring of the edges of K5

with two colors such that there are no monochromatic triangles? It turns out that the latter is true, so 6 is
indeed best possible. To see this, consider K5 with vertex set [5] = {1, 2, 3, 4, 5}. Think about these vertices
as forming an outer 5-cycle in order. Color the edges of this cycle RED and color all edges BLUE. More
formally, let

RED = {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {1, 5}}
BLUE = {{1, 3}, {1, 4}, {2, 4}, {2, 5}, {3, 5}}

Since any 3-element subset of the five vertices will contain at least one “consecutive” pair of numbers (where
we consider 1 and 5 to be “consecutive”), and at least one that is not “consecutive”, it follows that this
coloring has no monochromatic triangle.

Can we generalize these ideas? If we color the edges of K10, can you always find four vertices such that
all edges between them have the same color, i.e. can you always find a monochromatic (or homogeneous)
subgraph isomorphic to K4? What about K20?
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Definition 4.89. Let k, ` ∈ N+. Define R(k, `) to be the least n ∈ N+ (if it exists) such that whenever all
of the edges of Kn are colored with either red or blue, either there exists a subset A ⊆ V with |A| = k such
that all edges having both endpoints in A are red, or there exists a subset B ⊆ V with |B| = ` such that all
edges with both endpoints in B are blue.

In other words, R(k, `) is the least n ∈ N+ such that whenever all of the edges of Kn are colored with
either red or blue, either there is a subgraph of Kn isomorphic to Kk in which all edges are red, or there is
a subgraph of Kn isomorphic to K` in which all edges are blue. For example, we have the following simple
facts:

• R(k, 1) = 1 and R(1, `) = 1 for all k, ` ∈ N+. To see why R(k, 1) = 1, notice that for the trivial graph
with vertex set [1] and no edges, we may take B = {1} is satisfy the definition. The other is symmetric.

• R(k, 2) = k and R(2, `) = ` for all k, ` ∈ N+. To see why R(k, 2) ≤ k, notice that for the given any
coloring of the edges of Kk, either there is at least blue edge whose endpoints we can take for B, or
all edges are red and we can let A = [n]. Also, we have R(k, 2) > k− 1 because if we color all edges of
Kk−1 red, then no such A or B exist. Thus, R(k, 2) = k, and similarly R(2, `) = `.

• R(3, 3) = 6 from above.

• In general, we have R(`, k) = R(k, `) because we can switch the role of read and blue.

It’s not at all obvious that R(k, `) exists for each k, ` ∈ N+, but we will come up with a recursive upper
bound for these values shortly. To prepare for this result, we first prove the following.

Proposition 4.90. R(4, 3) exists and in fact R(4, 3) ≤ 10.

Proof. Consider an arbitrary coloring of the edges of K10 with red and blue. Pick an arbitrary vertex u.
Since u is incident to 9 total edges, either u is incident to at least 6 red edges or u is incident to at least 4
blue edges (otherwise, u would be incident to at most 5 + 3 = 8 many edges). We now have two cases.

• Case 1: Suppose that u is incident to at least 6 red edges. Fix 6 such edges, and call the other endpoints
of these edges w1, w2, . . . , w6. Now look at the subgraph of K10 induced by these 6 vertices. Since
R(3, 3) = 6 from above, either there is a red triangle amongst these vertices, or there is a blue triangle
amongst these vertices. If there is a blue triangle, then we are done by letting B be the corresponding
three vertices. Otherwise, there is a red triangle amongst the wi, and then we can include u with the
3 vertices that make up the red triangle to obtain a subset A ⊆ [10] with |A| = 4 such that all edges
having both endpoints in A are red.

• Case 2: Suppose that u is incident to at least 4 blue edges. Fix 4 such edges, and call the other
endpoints of these edges w1, w2, w3, w4. Now if the 6 edges with endpoints amongst the wi are all red,
then we can take A = {w1, w2, w3, w4}. Otherwise, there is a blue edge amongst the wi, and we can
include u with 2 endpoints of this edge to obtain a set B ⊆ [10] with |B| = 3 such that all edges having
both endpoints in B are blue.

This completes the proof.

This idea generalizes to the next inductive argument.

Theorem 4.91. For all k, ` ∈ N+, we have that R(k, `) exists, and in fact R(k, `) ≤ R(k−1, `)+R(k, `−1).

Proof. We prove this by induction on the value of k+ `. We know from above that R(k, 1) and R(k, 2) exist
for all k ∈ N+, and also that R(1, `) and R(2, `) exist for all ` ∈ N+. Now let k, ` ∈ N with k, ` ≥ 2 and
assume that both R(k − 1, `) and R(k, `− 1) exist. Let

133



• c = R(k − 1, `).

• d = R(k, `− 1).

• n = R(k − 1, `) +R(k, `− 1) = c+ d.

We show that if we color all of the edges of Kn with red/blue, then either there exists a subset A ⊆ V with
|A| = k such that all edges having both endpoints in A are red, or there exists a subset B ⊆ V with |B| = `
such that all edges with both endpoints in B are blue.

Consider then an arbitrary coloring of the edges of Kn with red and blue. Pick an arbitrary vertex u.
Since u is incident to n− 1 = c+ d− 1 total edges, either u is incident to at least c red edges or u is incident
to at least d blue edges (otherwise, u would be incident to at most c− 1 + d− 1 = c+ d− 2 = n− 2 many
edges). We now have two cases.

• Case 1: Suppose that u is incident to at least c red edges. Fix c such edges, and call the other
endpoints of these edges w1, w2, . . . , wc. Now look at the subgraph of Kn induced by these c vertices.
Since c = R(k− 1, `) from above, either there is a subset A of these vertices with |A| = k− 1 such that
all edges having both endpoints in A are red, or there exists a subset B of these vertices with |B| = `
such that all edges with both endpoints in B are blue. In the latter case, we are done by taking B. In
the former case, we can let A′ = A ∪ {u} and notice that |A′| = k and A′ has the required properties.

• Case 2: Suppose that u is incident to at least d blue edges. Fix d such edges, and call the other
endpoints of these edges w1, w2, . . . , wd. Now look at the subgraph of Kn induced by these d vertices.
Since d = R(k, `− 1) from above, either there is a subset A of these vertices with |A| = k such that all
edges having both endpoints in A are red, or there exists a subset B of these vertices with |B| = `− 1
such that all edges with both endpoints in B are blue. In the former case, we are done by taking A. In
the latter case, we can let B′ = B ∪ {u} and notice that |B′| = ` and B′ has the required properties.

This completes the proof.

Notice that using this result, we can immediately conclude that

R(4, 3) ≤ R(3, 3) +R(4, 2) = 6 + 4 = 10

as we showed in the special case above. Working in the other direction, we have the following.

Proposition 4.92. R(4, 3) ≥ 9.

Proof. We exhibit a coloring of the edges of K8 with red and blue such that there is no red K4 and no blue
K3. Take K8 an label the vertices clockwise with the numbers from [8]. Color the edge {i, j} with i < j blue
if j − i ∈ {1, 4, 7}, and color it red otherwise. Thus, we color {i, j} with i < j red if j − i ∈ {2, 3, 5, 6}.

We first argue that there is no blue triangle. Suppose one exists, and let the smallest vertex be i. We
would then need to choose two of the three potential vertices {i+ 1, i+ 4, i+ 7} (where we “wrap around”
beyond 8 if necessary) to add to it. This is impossible, because 4− 1 = 3, 7− 4 = 3, and 7− 1 = 6.

We now argue that there is no red K4. Suppose one exists, and let the smallest vertex be i. We would
then need to choose three of the four potential vertices {i+2, i+3, i+5, i+6} to add to it. This is impossible,
because we can’t choose both i+ 2 and i+ 3, and we also can’t choose both i+ 5 and i+ 6.

In fact, we can improve the upper bound R(4, 3) ≤ 10 with a little work.

Proposition 4.93. R(4, 3) ≤ 9.

134



Proof. In the proof of Proposition 4.90, we argued that in an arbitrary red/blue coloring of the edges of K10,
if we take an arbitrary vertex u, then either u is incident to at least 6 red edges or u is incident to at least
4 blue edges. We now argue that in an arbitrary red/blue coloring of the edges of K9, there exists a vertex
u that is incident to either at least 6 red edges of at least 4 blue edges. From here, we can follow the proof
of Proposition 4.90.

Suppose then that we have an arbitrary red/blue coloring of the edges of K9. Since every vertex is
incident to 8 edges, if there is no vertex u that is incident to either at least 6 red edges of at least 4 blue
edges, then every vertex must be incident to exactly 5 red edges and exactly 3 blue edges. Thus, if we
look at the subgraph of K9 containing all of the vertices but only the red edges, then each of the 9 vertices
has degree 5. Thus, the resulting graph would have an odd number of vertices of odd degree, which is a
contradiction.

Combining the two previous results, we conclude that R(4, 3) = 9. Using Theorem 4.91, it follows that

R(4, 4) ≤ R(3, 4) +R(4, 3)

= 9 + 9

= 18

In fact, it can be shown that R(4, 4) = 18. To conclude this, we need to show that there is a coloring of
the edges K17 with red/blue such that there is no monochromatic K4. This is possible as follows. Given
i, j ∈ {0, 1, 2, . . . , 16} with i < j, color the edge {i, j} with i < j red if j − i is a quadratic residue modulo
17 (i.e. if some perfect square has j − i as a remainder upon division by 17). In other words, we color {i, j}
red if j − i ∈ {1, 2, 4, 8, 9, 13, 15, 16}, and blue otherwise. Using some number theory, one can show that this
coloring has the required properties.

Here is a table with many of the known values of R(k, `), along with bounds on the numbers that we still
do not now.

k\` 2 3 4 5 6 7

2 2 3 4 5 6 7
3 3 6 9 14 18 23
4 4 9 18 25 35-41 49-61
5 5 14 25 43-49 58-87 80-143
6 6 18 35-41 58-87 102-165 113-298
7 7 23 49-61 80-143 113-298 205-540

In addition to the results of this table, it is also known that R(3, 8) = 28 and R(3, 9) = 36. However, the

best bounds for R(3, 10) are that 40 ≤ R(3, 10) ≤ 43. Asymptotically, it is know that R(3, k) ≈ k2

log k .

Theorem 4.94. For any k, ` ∈ N with k, ` ≥ 2, we have

R(k, `) ≤
(
k + `− 2

k − 1

)
Proof. We prove the result by induction on the value of k + `.

• Base Case: Suppose that k + ` = 4. We then have that k = 2 and ` = 2. Now R(2, 2) = 2, and we
have (

2 + 2− 2

2− 1

)
=

(
2

1

)
= 2

Thus, the statement is true when k + ` = 4.
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• Assume that m ≥ 4 and that we know that the statement is true whenever k + ` = m. Suppose now
that we have values of k, ` ∈ N with k ≥ 2, ` ≥ 2, and k + ` = m + 1. Notice that if k = 2, then
R(2, `) = ` and (

2 + `− 2

2− 1

)
=

(
`

1

)
= `

so the statement is true. Also, if ` = 2, then R(k, 2) = k and(
2 + k − 2

2− 1

)
=

(
k

1

)
= k

so the statement is true. Suppose now that k ≥ 3 and ` ≥ 3. We then have that k − 1 ≥ 2, that
`−1 ≥ 2, that (k−1)+` = m, and that k+(`−1) = m. Therefore, using Theorem 4.91 and induction,
we have

R(k, `) ≤ R(k − 1, `) +R(k, `− 1)

≤
(

(k − 1) + `− 2

(k − 1)− 1

)
+

(
k + (`− 1)− 2

k − 1

)
=

(
k + `− 3

k − 2

)
+

(
k + `− 3

k − 1

)
=

(
k + `− 2

k − 1

)
where the last line follow from Proposition 3.9.

The result follows by induction.

Corollary 4.95. For any k ∈ N with k ≥ 2, we have

R(k, k) ≤
(

2k − 2

k − 1

)
Proof. Immediate from the previous result.

Corollary 4.96. For any k ∈ N with k ≥ 2, we have R(k, k) ≤ 4k−1.

Proof. Let k ∈ N with k ≥ 2. We know from Corollary 3.11 that(
2k − 2

0

)
+

(
2k − 2

1

)
+ · · ·+

(
2k − 2

k − 1

)
+ · · ·+

(
2k − 2

2k − 2

)
= 22k−2.

Since every term in the above sum is nonnegative, it follows that(
2k − 2

k − 1

)
≤ 22k−2

= (22)k−1

= 4k−1.

The result now follows from the previous corollary.

Theorem 4.97. For all k ≥ 3, we have R(k, k) > 2k/2.
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Proof. Let n, and suppose that you color that edges of Kn randomly by flipping a coin. Given a subset S of

[n] with |S| = k, what is the probability that S is monochromatic? There are 2(k
2) many ways to color the

edges, and only two of them are monochromatic. Thus, the probability that S is monochromatic is

2

2(k
2)

But this is just for this one particular set S. What is the probability that some such S is monochromatic?
There are

(
n
k

)
many subsets S, so the probability of the union is bounded by the sum of the probabilities,

which gives (
n

k

)
· 2

2(k
2)

Now if this number is less than 1, then we know that there is some positive probability that no monochromatic
set of size k exists. So is this less than 1? If n ≤ 2k/2, we have(

n

k

)
· 2

2(k
2)
<
nk

k!
· 2

2(k
2)

≤ 2nk

k! · 2(k
2)

≤ 2 · nk

k! · 2k(k−1)/2

≤ 2 · 2k
2/2

k! · 2k(k−1)/2

Since
k2

2
− k(k − 1)

2
=
k

2
(k − (k − 1)) =

k

2

we get (
n

k

)
· 2

2(k
2)
< 2 · 2k

2/2

k! · 2k(k−1)/2

=
2 · 2k/2

k!

which is certainly less than 1 if k ≥ 3 (by induction).
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