Homework 10: Due Friday, April 3

Problem 1: Let $n, k \in \mathbb{N}^+$. Count the number of solutions to

$$x_1 + x_2 + \dots + x_k \le n$$

where each $x_i \in \mathbb{N}$. For example, if n = 2 and k = 2, then there are 6 solutions given by the following ordered pairs (x_1, x_2) :

(0,0) (0,1) (1,0) (0,2) (1,1) (2,0).

Your final answer should not involve any summations.

Problem 2: Suppose that you have 12 identical apples and 1 orange. a. In how many ways can you distribute the fruit to 4 distinct people? b. In how many ways can you distribute the fruit to 4 distinct people in such a x

b. In how many ways can you distribute the fruit to 4 distinct people in such a way that each person receives at least one piece of fruit?

Problem 3: Let B(n,k) be the number of compositions of n into k parts. Using a direct combinatorial argument (so without using our formula), show that

$$B(n,k) = B(n-1,k-1) + B(n-1,k)$$

for all $n, k \in \mathbb{N}$ with $2 \leq k \leq n$.

Problem 4: Show that $S(n,2) = 2^{n-1} - 1$ for all $n \ge 2$ in the following two ways:

a. By induction.

b. By a combinatorial argument.

Problem 5: Recall that $S(n, n-1) = \binom{n}{2}$ for all $n \ge 2$. Show that

$$S(n, n-2) = \binom{n}{3} + 3 \cdot \binom{n}{4}$$

for all $n \geq 3$.

Problem 6: In several cards games (bridge, spades, hearts, etc.) each player receives a 13-card hand from a standard 52-card deck.

a. How many such 13-card hands have at least one card of every suit? What percentage of all possible 13-card hands is this?

b. How many such 13-card hands have all four cards of some rank (e.g. all four queens)?