
Homework 5: Due Friday, February 21

Problem 1: Let r ∈ R with r 6= 1. Use induction to show that

1 + r + r2 + · · ·+ rn =
rn+1 − 1

r − 1

for all n ∈ N.

Problem 2: Let fn be the sequence of Fibonacci numbers, i.e. f0 = 0, f1 = 1, and fn = fn−1 + fn−2 for all
n ≥ 2. Show that gcd(fn+1, fn) = 1 for all n ∈ N.

Problem 3: Let a, b ∈ N+ and let d = gcd(a, b). Since d is a common divisor of a and b, we may fix k, ` ∈ N
with a = kd and b = `d. Let m = k`d.
a. Show that a | m, b | m, and dm = ab.
b. Suppose that n ∈ Z is such that a | n and b | n. Show that m | n.
Note: The number m is called the least common multiple of a and b and is written as lcm(a, b). Since
dm = ab from part (a), it follows that gcd(a, b) · lcm(a, b) = ab. Using this together with the Euclidean
Algorithm, we can quickly compute least common multiples.

Problem 4: Define a function σ : N+ → N+ by letting σ(n) be the sum of all positive divisors of n. In other
words, if Div(n) ∩ N+ = {d1, d2, . . . , dk}, then

σ(n) =

k∑
i=1

di.

For example, σ(6) = 1 + 2 + 3 + 6 = 12.
a. Give a closed form formula for σ(pn) whenever p ∈ N+ is prime and n ∈ N+.
b. Show that σ(ab) = σ(a) · σ(b) whenever a, b ∈ N+ satisfy gcd(a, b) = 1.
c. Use parts (a) and (b) to give a formula for σ(n) in terms of the prime factorization of n.

Problem 5:
a. Prove that if d, n ∈ N+ and d | n, then 2d − 1 | 2n − 1.
b. Prove that if n ∈ N+ and 2n − 1 is prime, then n is prime.
Note: Primes of the form 2p− 1, where p is prime, are called Mersenne primes. For example, 3 = 22− 1 is a
Mersenne Prime, as is 7 = 23−1. Notice that 24−1 = 15 is not prime (which follows from the contrapositive
of part (b), since 4 is not prime). It turns out that although 11 is prime, the number 211 − 1 is not prime,
so the converse of part (b) is false. It is an open question whether there are infinitely many Mersenne primes.

Problem 6: A number n ∈ N+ is called perfect if σ(n) = 2n. Since we always have n | n, notice that this
is the same as saying that the sum of the proper divisors of n equals n. For example, 6 is perfect because
σ(6) = 12 = 2 · 6, and notice that 6 = 1 + 2 + 3. Show that if 2p − 1 is a Mersenne prime, then 2p−1(2p − 1)
is perfect.
Cultural Aside: Euler proved a partial converse by showing that every even perfect number must equal
2p−1(2p − 1) for some Mersenne prime 2p − 1. The existence of odd perfect numbers is an open question.


