Homework 4: Due Tuesday, February 16

Exercises

Exercise 1: Show that if A is a finite set, then every injective function $f: A \to A$ is also surjective. *Note:* Try to argue this as formally as possible using Fact 4.2.1.

Exercise 2:

a. For each $n \in \mathbb{N}^+$, give an example of a set $\mathcal{F} \subseteq \mathcal{P}(\{1, 2, \dots, n\})$ with $|\mathcal{F}| = 2^{n-1}$ and such that $A \cap B \neq \emptyset$ whenever $A, B \in \mathcal{F}$. That is, \mathcal{F} should be a collection of 2^{n-1} many subsets of $\{1, 2, \dots, n\}$ with the property that any pair of sets from \mathcal{F} have a common element.

b. Let $n \in \mathbb{N}^+$. Let $\mathcal{F} \subseteq \mathcal{P}(\{1, 2, ..., n\})$ be such that $|\mathcal{F}| > 2^{n-1}$, i.e. suppose that \mathcal{F} is a collection of more than 2^{n-1} many subsets of $\mathcal{P}(\{1, 2, ..., n\})$. Show that there exists two elements of \mathcal{F} that are disjoint.

Problems

Problem 1: Let A, B, C be sets and let $f: A \to B$ and $g: B \to C$ be functions. Show that if $g \circ f$ is surjective and g is injective, then f is surjective.

Problem 2: A lattice point in the plane is a point of the form (a, b) where $a, b \in \mathbb{Z}$. For example, (3, 5) is a lattice point but $(\pi, 1)$ is not. Show that given any 5 lattice points in the plane, there exists two of the points whose midpoint is also a lattice point.

Problem 3:

a. For each $n \in \mathbb{N}^+$, give an example of a set $S \subseteq \{1, 2, \dots, 2n\}$ with |S| = n such that $\gcd(a, b) > 1$ for all $a, b \in S$ with $a \neq b$.

b. Let $n \in \mathbb{N}^+$. Suppose that $A \subseteq \{1, 2, \dots, 2n\}$ and |A| = n + 1. Show that there exists $a, b \in A$ with $a \neq b$ such that $\gcd(a, b) = 1$.

Problem 4: Let $n \in \mathbb{N}^+$. Given any n+2 many integers, show that it always possible to find two of them such that either their sum or their difference (or both) is divisible by 2n.

Problem 5: Suppose that you have a group of 10 people and that the age of every person in the group is between 1 and 100 (inclusive). Suppose also that all of the ages are distinct, so there are not two people of the same age.

- a. Show that there exist two nonempty distinct subsets A and B of people such that the sum of the ages of the people in A equals the sum of the ages of the people in B.
- b. Show moreover that you can find A and B as in part a that are also disjoint, i.e. for which no person is in both A and B.

Example: Suppose that the ages of the people in the group are 3, 7, 13, 19, 24, 30, 38, 49, 63, 78. One such example is $A = \{3, 13, 78\}$ and $B = \{7, 19, 30, 38\}$ since 3 + 13 + 78 = 94 = 7 + 19 + 30 + 38.

Hint: How many possible nonempty subsets of people are there? What's the largest possible sum?