Homework 7: Due Tuesday, March 2

Exercises

Exercise 1: Given a finite sequence of zeros and ones, define a *run* of ones to be a maximal consecutive subsequence of ones. For example, the sequence 11101100000100101100 has 5 runs of ones (and also 5 runs of zeros). Let $m, n, k \in \mathbb{N}^+$ with $k \leq m$ and $k \leq n$. Calculate the number of sequences of zeros and ones of length m + n which have all three of the following properties:

- Have exactly m zeros and n ones.
- Starts with a one and ends with a zero.
- Have exactly k runs of ones.

Hint: How many runs of zeros must such a sequence have? Think about the lengths of the various runs and how they relate to compositions.

Exercise 2: Determine the number of solutions to

$$x_1 + x_2 + x_3 + x_4 = 17,$$

where $x_i \in \mathbb{N}$ and $x_i \leq 6$ for all *i*.

Problems

Problem 1: Let $m, n \in \mathbb{N}^+$ with $m \leq n$. If σ is a permutation of [n], then we say that $i \in [n]$ is a fixed point of σ if $\sigma(i) = i$. How many permutations of [n] have exactly m fixed points?

Problem 2: In several cards games (bridge, spades, hearts, etc.), each player receives a 13-card hand from a standard 52-card deck.

a. How many such 13-card hands have at least one card of every suit? What percentage of all possible 13-card hands is this?

b. How many such 13-card hands have all four cards of some rank (e.g. all four queens)?

Problem 3: Consider all 10¹⁰ many ten-digit numbers where you allow leading zeros (so 0018345089 is one possibility). How many such numbers have the property that every odd digit occurs at least once?

Problem 4: Fix $n \in \mathbb{N}^+$. Consider the graph Q_n defined as follows. Let the vertex set V be the set of all sequences of 0's and 1's of length n (so for example, when n = 3, then one vertex is 010 and another is 111). Let E be the set of all pairs $\{u, v\}$ such that u and v differ in exactly one coordinate (so for example, when n = 3, there is edge with endpoints 001 and 101). The graph Q_n is called is called the n-cube.

a. Draw the graphs Q_1 , Q_2 , and Q_3 .

- b. Write down the adjacency matrix for Q_3 (clearly indicate the ordering of the vertices that you are using).
- c. Let $U = \{0000, 0100, 1110, 1001, 1111\}$. Draw $Q_4[U]$.
- d. Determine d(u) for each $u \in Q_n$.
- e. Determine the number of vertices and edges in Q_n .

Problem 5: Let G be a finite graph. Explain why the number of 1's in any adjacency matrix of G equals the number of 1's in any incidence matrix of G.

Problem 6: Let G be a finite graph with $|V| \ge 2$. Show that there exist $u, w \in V$ with $u \ne w$ such that d(u) = d(w).