Homework 1: Due Monday, January 31

Problem 1: Write out the following sets explicitly, and state their cardinalities:

- a. $\mathcal{P}(\{1,2,3\})$.
- b. $\mathcal{P}(\{1,\{2,3\}\})$.
- c. $\mathcal{P}(\mathcal{P}(\{2\}))$.
- d. $\mathcal{P}(\emptyset)$ (be careful!).

Problem 2: Give an example of three finite sets A_1, A_2, A_3 with $A_1 \cap A_2 \cap A_3 = \emptyset$ and

$$|A_1 \cup A_2 \cup A_3| \neq |A_1| + |A_2| + |A_3|.$$

Problem 3: Given two sets A and B, we define

$$A\triangle B = \{x : x \text{ is an element of exactly one of } A \text{ or } B\},\$$

and we call this set the *symmetric difference* of A and B.

- a. Determine $\{1, 3, 8, 9\} \triangle \{2, 3, 4, 7, 8\}$.
- b. Determine $\{1, 2, 3\} \triangle \{1, \{2, 3\}\}$.
- c. What are the smallest 9 elements of the set $\{2n : n \in \mathbb{N}\} \triangle \{3n : n \in \mathbb{N}\}$?
- d. Make a conjecture about how to write $\{2n : n \in \mathbb{N}\} \triangle \{3n : n \in \mathbb{N}\}$ as the union of 3 pairwise disjoint sets (no need to prove this conjecture, but do write the 3 sets parametrically).
- e. Show that if A and B are finite sets, then $|A\triangle B| = |A \setminus B| + |B \setminus A|$.
- f. Show that if A and B are finite sets, then $|A \triangle B| = |A \cup B| |A \cap B|$.

Note: For parts (e) and (f), appeal to the fundamental counting rules from class or Section 1.2 of the notes.

Problem 4: Let A be a finite set, and let n = |A|. Let $D = \{(a, b) \in A^2 : a = b\}$.

- a. Write the set D parametrically.
- b. What is $|A^2 \setminus D|$? Explain.

Problem 5: Give a careful proof showing that $\{6n^2 + 14 : n \in \mathbb{Z}\} \subseteq \{2n - 8 : n \in \mathbb{Z}\}.$

Problem 6: Give a careful double containment proof showing that $\{\sqrt{5x^2+9}:x\in\mathbb{R}\}=\{x\in\mathbb{R}:x\geq 3\}$. Recall: Given $x\in\mathbb{R}$ with $x\geq 0$, we define \sqrt{x} to be the unique nonnegative $y\in\mathbb{R}$ with $y^2=x$.

Problem 7:

- a. Is $\mathbb{Z} \in \mathcal{P}(\mathbb{R})$? Is $\mathbb{Z} \subseteq \mathcal{P}(\mathbb{R})$? Explain.
- b. Does $\mathcal{P}(A) \cap \mathcal{P}(B) = \mathcal{P}(A \cap B)$ for all sets A and B? Explain.
- c. Does $\mathcal{P}(A) \cup \mathcal{P}(B) = \mathcal{P}(A \cup B)$ for all sets A and B? Explain.