Homework 5: Due Friday, February 25

Problem 1: Let $r \in \mathbb{R}$ with $r \neq 1$. Use induction to show that

$$1 + r + r^{2} + \dots + r^{n} = \frac{r^{n+1} - 1}{r - 1}$$

for all $n \in \mathbb{N}$.

Problem 2: Let f_n be the sequence of Fibonacci numbers, i.e. $f_0 = 0$, $f_1 = 1$, and $f_n = f_{n-1} + f_{n-2}$ for all $n \ge 2$. Use induction to show that $gcd(f_{n+1}, f_n) = 1$ for all $n \in \mathbb{N}$.

Problem 3: Let $a, b \in \mathbb{Z}$, and let $c \in \mathbb{N}^+$. Let m = gcd(a, b). In this problem we show that gcd(ca, cb) = cm, i.e. that $\text{gcd}(ca, cb) = c \cdot \text{gcd}(a, b)$, by verifying the three defining properties:

a. Explain why $cm \ge 0$.

b. Show that cm is a common divisor of ca and cb.

c. Let $d \in \mathbb{Z}$ be an arbitrary common divisor of *ca* and *cb*. Show that $d \mid cm$.

Problem 4: Determine, with explanation, which numbers $n \in \mathbb{N}^+$ satisfy d(n) = 14.

Problem 5: Let $a, b \in \mathbb{N}^+$ and let d = gcd(a, b). Since d is a common divisor of a and b, we may fix $k, \ell \in \mathbb{N}$ with a = kd and $b = \ell d$. Let $m = k\ell d$.

a. Show that $a \mid m$, that $b \mid m$, and that dm = ab.

b. Suppose that $n \in \mathbb{Z}$ is such that $a \mid n$ and $b \mid n$. Show that $m \mid n$.

Note: The number m is called the *least common multiple* of a and b and is written as lcm(a, b). Since dm = ab from part (a), it follows that $gcd(a, b) \cdot lcm(a, b) = ab$. Using this together with the Euclidean Algorithm, we can quickly compute least common multiples.

Problem 6: Define a function $\sigma \colon \mathbb{N}^+ \to \mathbb{N}^+$ by letting $\sigma(n)$ be the sum of all positive divisors of n. In other words, if $Div^+(n) = \{d_1, d_2, \ldots, d_m\}$, then

$$\sigma(n) = \sum_{i=1}^{m} d_i.$$

For example, $\sigma(6) = 1 + 2 + 3 + 6 = 12$.

a. Give a closed-form formula (i.e. a formula not involving a sum) for $\sigma(p^k)$ whenever $p \in \mathbb{N}^+$ is prime and $k \in \mathbb{N}^+$.

b. Show that $\sigma(ab) = \sigma(a) \cdot \sigma(b)$ whenever $a, b \in \mathbb{N}^+$ satisfy gcd(a, b) = 1.

c. Use parts (a) and (b) to give a formula for $\sigma(n)$ in terms of the prime factorization of n.

Hint for (b): Suppose that $Div^+(a) = \{c_1, c_2, \ldots, c_k\}$ and $Div^+(b) = \{d_1, d_2, \ldots, d_m\}$. How can you determine $Div^+(ab)$ using the results of Section 3.3?