Homework 11: Due Friday, November 30

Problem 1: Suppose that $f: \mathbb{R} \to \mathbb{R}$ is continuous on \mathbb{R} . Assume f satisfies each of the following:

- 1. f(x) > 0 for all $x \in \mathbb{R}$.
- $2. \lim_{x \to \infty} f(x) = 0.$
- 3. $\lim_{x \to -\infty} f(x) = 0.$

Show that f attains a maximum value on \mathbb{R} , i.e. that there exists $z \in \mathbb{R}$ with $f(z) \ge f(x)$ for all $x \in \mathbb{R}$.

Problem 2: Suppose that $f, g: \mathbb{R} \to \mathbb{R}$ are both differentiable on \mathbb{R} and that $f \circ g = id_{\mathbb{R}}$, i.e. that f(g(x)) = x for every $x \in \mathbb{R}$.

a. Show that $g'(a) \neq 0$ for every $a \in \mathbb{R}$.

b. Show that if $b \in \operatorname{range}(g)$, then $f'(b) \neq 0$.

Problem 3: Let A be an interval. Suppose that f is continuous on A, is differentiable on int(A), and that $f'(x) \neq 1$ for all $x \in A$. Show that f has at most one fixed point. That is, show that there is at most one $z \in A$ with f(z) = z.

Problem 4:

a. Suppose that $f, g: [a, b] \to \mathbb{R}$ are continuous on [a, b] and differentiable on (a, b). Suppose also that f(a) = g(a) and f'(x) < g'(x) for all $x \in (a, b)$. Show that f(b) < g(b).

b. Suppose that $f: [0, 1] \to \mathbb{R}$ is continuous on [0, 1] and is twice differentiable on (0, 1), i.e. that f'(x) and f''(x) exist for all $x \in (0, 1)$. Suppose also that f(0) = f'(0) = 0 and f(1) = 5. Show that there exists $c \in (0, 1)$ with $f''(c) \ge 10$. (In other words, if you start at rest and move 5 meters in 1 second, then at some point your acceleration must have been at least 10 meters per second²).

Problem 5: Let $f, g: [a, b] \to \mathbb{R}$ be bounded. Suppose that f is integrable on [a, b] and that g(x) = f(x) for all $x \in [a, b)$, i.e. that g agrees with f at all points with the possible exception of b. Using Proposition 6.2.12, we know that g is integrable on [a, b]. Show that $\int_a^b g = \int_a^b f$.

6.2.12, we know that g is integrable on [a, b]. Show that $\int_a^b g = \int_a^b f$. *Hint:* It suffices to argue that for all $\varepsilon > 0$, we have both $\int_a^b g \le (\int_a^b f) + \varepsilon$ and $\int_a^b f \le (\int_a^b g) + \varepsilon$. *Aside:* A similar argument works if g agrees with f at all but one point (anywhere in [a, b]). Using induction,

Aside: A similar argument works if g agrees with f at all but one point (anywhere in [a, b]). Using induction, the result then generalizes to the case where g agrees with f at all but finitely many points.