Homework 7: Due Friday, October 19

Problem 1: With our work on rearrangements of series, you might be concerned about rearrangements of sequences. Suppose then that $\langle a_n \rangle$ is a sequence that converges to $\ell \in \mathbb{R}$. Show that if $\langle b_n \rangle$ is a rearrangement of $\langle a_n \rangle$, i.e. if there exists a bijection $f: \mathbb{N}^+ \to \mathbb{N}^+$ such that $b_{f(n)} = a_n$ for all $n \in \mathbb{N}^+$, then $\langle b_n \rangle$ converges to ℓ .

Problem 2: Either prove or give a counterexample for each of the following: a. For all $A, B \subseteq \mathbb{R}$, we have $\operatorname{int}(A \cup B) = \operatorname{int}(A) \cup \operatorname{int}(B)$. b. For all $A, B \subseteq \mathbb{R}$, we have $\operatorname{int}(A \cap B) = \operatorname{int}(A) \cap \operatorname{int}(B)$.

Problem 3: Let $A \subseteq \mathbb{R}$. Given $b \in \mathbb{R}$, we say that b is an *isolated point* of A if there exists $\delta > 0$ such that $V_{\delta}(b) \cap A = \{b\}$. Notice that if b is an isolated point of A, then $b \in A$. a. Show that if b is an isolated point of A, then $b \in cl(A)$, but b is not a limit point of A. b. Show that for any set $A \subseteq \mathbb{R}$, we have

 $cl(A) = \{b \in \mathbb{R} : b \text{ is an isolated point of } A\} \cup \{b \in \mathbb{R} : b \text{ is a limit point of } A\}.$

Problem 4: Let $A \subseteq \mathbb{R}$ be nonempty and bounded above.

a. Show that $\sup A \in \operatorname{cl}(A)$.

b. Show that if A is open, then $\sup A \notin A$.

Problem 5: Let $\langle a_n \rangle$ be a sequence. Show that $\{b \in \mathbb{R} : b \text{ is a cluster point of } \langle a_n \rangle\}$ is closed.