Homework 9: Due Friday, November 9

Problem 1: Using the definition of a limit (i.e. do not use any of our powerful results), show that $\lim_{x \to 1/2} \frac{1}{x} = 2$.

- **Problem 2:** Let $f: \mathbb{R} \to \mathbb{R}$ be a function, and let $a, c, \ell \in \mathbb{R}$. Suppose that $\lim f(x) = \ell$.
- a. Define $g: \mathbb{R} \to \mathbb{R}$ by letting g(x) = f(x+a). Show that $\lim_{x \to c-a} g(x) = \ell$.

b. Define $g: \mathbb{R} \to \mathbb{R}$ by letting g(x) = f(ax). Show that if $a \neq 0$, then $\lim_{x \to \infty} g(x) = \ell$.

Problem 3: Let $f: A \to \mathbb{R}$ be a function and let $c, \ell \in \mathbb{R}$. Assume that for all $\delta > 0$, the sets $(c, c + \delta) \cap A$ and $(c - \delta, c) \cap A$ are both nonempty. We define left-sided and right-sided limits as follows:

- 1. We define $\lim_{x \to c^-} f(x) = \ell$ to mean that for every $\varepsilon > 0$, there exists $\delta > 0$ such that for all $x \in A$ with $0 < c x < \delta$, we have $|f(x) \ell| < \varepsilon$.
- 2. We define $\lim_{x \to c^+} f(x) = \ell$ to mean that for every $\varepsilon > 0$, there exists $\delta > 0$ such that for all $x \in A$ with $0 < x c < \delta$, we have $|f(x) \ell| < \varepsilon$.

Show that $\lim_{x \to c} f(x) = \ell$ if and only if both $\lim_{x \to c^-} f(x) = \ell$ and $\lim_{x \to c^+} f(x) = \ell$.

Definition: Let $f: A \to \mathbb{R}$ be a function and let $c, \ell \in \mathbb{R}$.

- 1. Suppose that c is a limit point of A. We define $\lim_{x\to c} f(x) = \infty$ to mean that for every $z \in \mathbb{R}$, there exists $\delta > 0$ such that for all $x \in A$ with $0 < |x c| < \delta$, we have f(x) > z.
- 2. Suppose that for all $y \in \mathbb{R}$, there exists $x \in A$ with x > y. We define $\lim_{x \to \infty} f(x) = \ell$ to mean that for every $\varepsilon > 0$, there exists $z \in \mathbb{R}$ such that for all $x \in A$ with x > z, we have $|f(x) \ell| < \varepsilon$.

Problem 4: Show that $\lim_{x\to 0} \frac{1}{x^2} = \infty$.

Problem 5: Let $f, g: \mathbb{R} \to \mathbb{R}$ and let $\ell, m \in \mathbb{R}$. Suppose that $\lim_{x \to \infty} f(x) = \ell$ and $\lim_{x \to \infty} g(x) = m$. Show that $\lim_{x \to \infty} (f+g)(x) = \ell + m$.

Problem 6: Let

$$f(x) = \begin{cases} x & \text{if } x \in \mathbb{Q} \\ 0 & \text{otherwise} \end{cases}$$

Show that f is continuous at 0, but not not continuous at any $c \neq 0$.