## Homework 4: Due Friday, September 22

**Problem 1:** As mentioned in class, (Jordan) outer content  $c^*$  is defined in the same way as  $m^*$ , but only using finite covers. In other words

$$c^*(A) = \inf\left\{\sum_{k=1}^{\ell} v(I_k) : A \subseteq \bigcup_{k=1}^{\ell} I_k \text{ and each } I_k \text{ is a closed interval}\right\}.$$

Notice that  $m^*(A) \leq c^*(A)$  for every set  $A \subseteq \mathbb{R}^n$ .

decimal representations. Show that  $m^*(A) = 0$ .

a. Show that  $c^*(A) = c^*(\mathsf{cl}(A))$  for every set  $A \subseteq \mathbb{R}^n$ .

b. Give an example of a set  $A \subseteq \mathbb{R}$  with  $m^*(A) \neq m^*(\mathsf{cl}(A))$ .

**Problem 2:** Let  $c, d \in \mathbb{R}$  with c < d, and let  $N \subseteq (c, d)$  with  $m^*(N) = 0$ . Let  $A = (c, d) \setminus N$ . a. Show that A is uncountable. b. Show that A is dense in (c, d), i.e. for all  $x, y \in \mathbb{R}$  with c < x < y < d, we have  $A \cap (x, y) \neq \emptyset$ .

**Problem 3:** Let A be the subset of [0, 1] consisting of those numbers that do not contain the digit 3 in their

**Problem 4:** Given  $A \subseteq \mathbb{R}$ , we define  $A^2 = \{a^2 : a \in A\}$ . Show that if  $A \subseteq \mathbb{R}$  and  $m^*(A) = 0$ , then  $m^*(A^2) = 0$ .

*Hint:* It is easier to do this if you have some bounds on the elements of A. First assume that  $A \subseteq [0, n]$  for some  $n \in \mathbb{N}^+$ , and then work with a general set.

**Problem 5:** Show that if  $A \subseteq \mathbb{R}$  is measurable, then for any  $t \in \mathbb{R}$ , the set  $tA = \{ta : a \in A\}$  is measurable.

**Problem 6:** Given two sets A and B, let  $A + B = \{a + b : a \in A, b \in B\}$ . Show that C + C = [0, 2], where C is the Cantor Set.

*Hint:* Using the notation from Definition 1.21 from the Metric Space notes, first show that  $C_n + C_n = [0, 2]$  for all  $n \in \mathbb{N}$ . It may help to notice that  $C_{n+1} = \frac{1}{3}C_n \cup (\frac{2}{3} + \frac{1}{3}C_n)$  for all  $n \in \mathbb{N}$  (you do not need to prove this, but do think about why it is true).

Aside: Recall that  $m^*(C) = 0$ , so it is pretty surprising that we can obtain a set with positive outer measure by adding together two sets with outer measure 0.