Homework 7: Due Friday, October 27

Problem 1: Determine, with explanation, the value of

$$\lim_{n \to \infty} \int_0^1 \left(\frac{nx}{1+n} + 3\sin(x^2n) \cdot x^n \right).$$

Problem 2: Let $f: [a, b] \to \mathbb{R}$ be a nonnegative measurable function. Let $c, d \in \mathbb{R}$ with both c > 0 and d > 0. Show that if $\int_a^b f < d$, then $m(\{x \in [a, b] : f(x) \ge c\}) < \frac{d}{c}$.

Problem 3: Let $f: [a, b] \to \mathbb{R}$ be a measurable function.

a. Show that for all $\varepsilon > 0$, there exists $K \in \mathbb{R}$ such that $m(\{x \in [a, b] : f(x) \notin [-K, K]\}) < \varepsilon$.

b. Show that for all $\varepsilon > 0$ and all $K \in \mathbb{R}$, there exists a simple function $\varphi \colon [a, b] \to \mathbb{R}$ such that $|f(x) - \varphi(x)| < \varepsilon$ for all $x \in [a, b]$ with $-K \leq f(x) \leq K$.

c. Show that for all $\varepsilon > 0$, there exists a simple function $\varphi \colon [a, b] \to \mathbb{R}$ such that

$$m(\{x \in [a,b] : |f(x) - \varphi(x)| \ge \varepsilon\}) < \varepsilon.$$

Problem 4: Let $f: \mathbb{R} \to \mathbb{R}$ be a nonnegative integrable function, i.e. assume that f is nonnegative, measurable, and that $\int f < \infty$. Define $F: \mathbb{R} \to \mathbb{R}$ by letting

$$F(x) = \int_{(-\infty,x]} f.$$

Show that F is continuous.

Problem 5:

a. Let f_1, f_2, \ldots be a sequence of nonnegative measurable functions from \mathbb{R} to \mathbb{R} such that $\sum_{k=1}^{\infty} f_k(x)$ converges for all $x \in \mathbb{R}$. Let $g(x) = \sum_{k=1}^{\infty} f_k(x)$. Show that

$$\int g = \sum_{k=1}^{\infty} \left(\int f_k \right).$$

b. Let $g: \mathbb{R} \to \mathbb{R}$ be a nonnegative measurable function, and let A_1, A_2, \ldots be a sequence of pairwise disjoint measurable subsets of \mathbb{R} . Show that

$$\int_{\bigcup_{k=1}^{\infty} A_k} g = \sum_{k=1}^{\infty} \left(\int_{A_k} g \right).$$

Problem 6: Suppose that $f: \mathbb{R} \to \mathbb{R}$ is integrable, i.e. f is measurable and both $\int f^+ < \infty$ and $\int f^- < \infty$. Let $g: \mathbb{R} \to \mathbb{R}$ be a bounded measurable function. Show that $f \cdot g: \mathbb{R} \to \mathbb{R}$ is integrable.