Homework 8b: Due Friday, November 10

Problem 1: Let (X, \mathcal{S}, μ) be a measure space. On Homework 8a, you showed that the set

$$\mathcal{S}_{\mu} = \{E \in \mathcal{P}(X) : \text{There exists } A, B \in \mathcal{S} \text{ with } A \subseteq E \subseteq B \text{ and } \mu(B \setminus A) = 0\}$$

was a σ -algebra on X containing S. Define $\overline{\mu} : S_{\mu} \to [0, \infty]$ as follows. Given $E \in S_{\mu}$, fix some $A, B \in S$ with $A \subseteq E \subseteq B$ and $\mu(B \setminus A) = 0$, and let $\overline{\mu}(E) = \mu(A)$.

a. Show that $\overline{\mu}$ is well-defined.

b. Show that $\overline{\mu}(E) = \mu(E)$ for all $E \in \mathcal{S}$.

c. Show that $(X, \mathcal{S}_{\mu}, \overline{\mu})$ is a measure space.

d. Show that for all $E \in S_{\mu}$ with $\overline{\mu}(E) = 0$, we have $\mathcal{P}(E) \subseteq S_{\mu}$.

Note: This shows that $(X, S_{\mu}, \overline{\mu})$ is a complete measure space such that $S_{\mu} \supseteq S$ and $\overline{\mu}$ extends μ . The measure space $(X, S_{\mu}, \overline{\mu})$ is (shockingly) called the completion of (X, S, μ) .

Problem 2:

a. Let X and Y be sets, let S be a σ -algebra on X, and let $f: X \to Y$. Show that

$$\mathcal{T} = \{ B \in \mathcal{P}(Y) : f^{-1}(B) \in \mathcal{S} \}.$$

is a σ -algebra on Y.

b. Given a metric space (X, d), recall that we defined the Borel σ -algebra of X to be the smallest σ -algebra on X that contains every open set. Suppose that (X_1, d_1) and (X_2, d_2) are both metric spaces, and that $f: X_1 \to X_2$ is continuous. Show that $f^{-1}(B)$ is a Borel subset of X_1 for all Borel subsets B of X_2 .