Homework 9a: Due Friday, November 17

Problem 1: For each $n \in \mathbb{N}^+$, define $f_n : [0,1] \to \mathbb{R}$ by

$$f_n(x) = \begin{cases} n & \text{if } \frac{1}{n+1} \le x \le \frac{1}{n}, \\ 0 & \text{otherwise.} \end{cases}$$

Is $\langle f_n \rangle$ a Cauchy sequence in $L^1[0,1]$? Explain.

Problem 2: Let $f:[a,b]\to\mathbb{R}$ be a bounded measurable function. Recall that we originally thought about defining $||f||_{\infty}$ to be $\sup\{|f(x)|:x\in[a,b]\}$. However, unlike our definition for L^p , such a definition would not be stable if we changed the function on a set of measure 0. As a result, we actually define

$$||f||_{\infty} = \inf\{c \in \mathbb{R} : m(\{x \in [a, b] : |f(x)| > c\}) = 0\}$$

= $\inf\{c \in \mathbb{R}^+ : m(f^{-1}((-\infty, -c) \cup (c, \infty))) = 0\}.$

The quantity on the right is sometimes called the essential supremum of f.

a. Show that if $f,g:[a,b]\to\mathbb{R}$ are both bounded measurable functions, and if f=g a.e., then $||f||_{\infty}=||g||_{\infty}$.

b. Show that if $f, g: [a, b] \to \mathbb{R}$ are both bounded measurable functions, then

$$||f + g||_{\infty} \le ||f||_{\infty} + ||g||_{\infty}.$$

Problem 3: Let V be an inner product space.

- a. Show that $||\vec{v} + \vec{w}||^2 + ||\vec{v} \vec{w}||^2 = 2 \cdot ||\vec{v}||^2 + 2 \cdot ||\vec{w}||^2$ for all $\vec{v}, \vec{w} \in V$. b. Show that $||\vec{v} + \vec{w}||^2 ||\vec{v} \vec{w}||^2 = 4 \cdot \langle \vec{v}, \vec{w} \rangle$ for all $\vec{v}, \vec{w} \in V$.
- c. Show that the function $f: V \to \mathbb{R}$ defined by $f(\vec{v}) = ||\vec{v}||$ is continuous.

Aside: Part (a) is known as the parallelogram law, because it says that the sums of the squares of the lengths of the sides of a parallelogram equals the sum of the squares of the lengths of the diagonals.