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1 Metric Spaces
1.1 Definition and Examples
Definition 1.1. A metric space is a nonempty set X together with a function d : X2 → R having the
following properties:

1. d(x, x) = 0 for all x ∈ X, and d(x, y) > 0 whenever x, y ∈ X with x 6= y.

2. d(x, y) = d(y, x) for all x, y ∈ X.

3. d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

Examples:

1. X = R with d(x, y) = |x− y|.

2. X = Rn with d((x1, x2, . . . , xn), (y1, y2, . . . , yn)) = max{|x1 − y1|, |x2 − y2|, . . . , |xn − yn|}.

3. X = Rn with d((x1, x2, . . . , xn), (y1, y2, . . . , yn)) = |x1 − y1|+ |x2 − y2|+ · · ·+ |xn − yn|.

4. X = Rn with d((x1, x2, . . . , xn), (y1, y2, . . . , yn)) =
√
(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xn − yn)2.

5. X = C[0, 1] is the set of all continuous functions f : [0, 1] → R with d(f, g) = sup{|f(x) − g(x)| : x ∈
[0, 1]}.

6. X = C[0, 1] is the set of all continuous functions f : [0, 1] → R with d(f, g) =
∫ 1

0
|f(x)− g(x)| dx.

7. X = C[0, 1] is the set of all continuous functions f : [0, 1] → R with d(f, g) =
√∫ 1

0
(f(x)− g(x))2 dx.

8. Let X = {0, 1}N be the set of all infinite sequences of 0s and 1s. Alternatively, one can define X to
be the set of all functions f : N → {0, 1}. Define d by letting d((x0, x1, x2, . . . ), (y0, y1, y2, . . . )) =

1
2m ,

where m is the least n with xn 6= yn, and letting it be 0 if no such n exists.

9. X = [0, 1) = {x ∈ R : 0 ≤ x < 1} and

d(x, y) =


0 if x = y,

min{y − x, x+ 1− y} if x < y,

min{x− y, y + 1− x} if y < x.

10. Let X be any set, and define

d(x, y) =

{
0 if x = y,

1 otherwise.
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Definition 1.2. Let (X, d) be a metric space, let 〈xn〉 be a sequence of points from X, and let ` ∈ X. We
say that 〈xn〉 converges to `, and write lim

n→∞
xn = ` if for all ε > 0, there exists N ∈ N+ such for all n ≥ N ,

we have d(xn, `) < ε.

Definition 1.3. Let (X, d) be a metric space and let 〈xn〉 be a sequence of points from X. We say that 〈xn〉
converges if there exists an ` ∈ X such that 〈xn〉 converges to `. If 〈xn〉 does not converge, we say that 〈xn〉
diverges.

Proposition 1.4. Suppose that 〈xn〉 is a convergent sequence in a metric space (X, d). There exists a unique
` ∈ R with lim

n→∞
xn = `.

Proof. The existence of an ` is immediate from the definition. For uniqueness, suppose that 〈xn〉 converges
to both ` and m. We show that d(`,m) < ε for all ε > 0. Let ε > 0 be arbitrary. Since 〈xn〉 converges to `,
we can fix N1 ∈ N+ such that d(xn, `) <

ε
2 for all n ≥ N1. Since 〈xn〉 converges to m, we can fix N2 ∈ N+

such that |xn −m| < ε
2 for all n ≥ N2. Consider n = max{N1, N2}. We then have

d(`,m) ≤ d(`, xn) + d(xn,m)

= d(xn, `) + d(xn,m)

<
ε

2
+

ε

2
(since n ≥ N1 and n ≥ N2)

= ε.

Since ε > 0 was arbitrary, it follows that d(`,m) < ε for all ε > 0. Thus, we must have d(`,m) = 0, so by
Property 1 of a metric space, it follows that ` = m.

Definition 1.5. Let (X, d) be a metric space and let 〈xn〉 be a sequence of points from X, and let ` ∈ X.
We say that 〈xn〉 is a Cauchy sequence if for all ε > 0, there exists N ∈ N+ such for all m,n ≥ N , we have
d(xm, xn) < ε.

Proposition 1.6. In a metric space (X, d), every convergent sequence is a Cauchy sequence.

Proof. Suppose that 〈xn〉 is a convergent sequence from X. Fix ` ∈ X with lim
n→∞

xn = `. Let ε > 0. Since
lim
n→∞

xn = `, we can fix N ∈ N+ such that d(xn, `) <
ε
2 for all n ≥ N . For any m,n ≥ N , we then have

d(xm, xn) ≤ d(xm, `) + d(`, xn)

≤ d(xm, `) + d(xn, `)

<
ε

2
+

ε

2
(since n,m ≥ N)

= ε.

Therefore, 〈xn〉 is a Cauchy sequence.

In a metric space, the converse of this statement is not generally true.

Definition 1.7. A metric space (X, d) is complete if every Cauchy sequence converges.

The set R with its usual metric is complete. However, the set Q with the usual metric (inherited from
R) is not complete. Intuitively, a complete metric space is one that does not have any “holes” or “gaps”.
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1.2 Interior, Closure, and Limit Points
Definition 1.8. Let (X, d) be a metric space. Given x ∈ X and r ∈ R, we let Br(x) = {y ∈ X : d(x, y) < r}.
The set Br(x) is called the ball of radius r around x.

Definition 1.9. Let (X, d) be a metric space, let A ⊆ X and let x ∈ X.

• We say that x is an interior point of A if there exists ε > 0 with Bε(x) ⊆ A.

• We say that x is a closure point of A if for all ε > 0, we have Bε(x) ∩A 6= ∅.

• We say that x is a limit point of A if for all ε > 0, the set Bε(x)∩A contains at least one point distinct
from x.

Intuitively, a point x ∈ X is an interior point of A is it sits “comfortably” inside A because we can fatten
up x to a whole (potentially very small) ball of points around x that completely sits inside A. A point x is
a closure point of A if it is very friendly with points of A in the sense that there are points of A that are
arbitrarily close to x. Finally, the difference between a limit point and a closure point is that we do not
allow the situation where x is a hermit, i.e. we require that every neighborhood of x contains points of A,
but we do not allow x to serve as such a “close” point.

Notation 1.10. Let (X, d) be a metric space, and let A ⊆ X.

• We let int(A) = {x ∈ X : x is an interior point of A}, and call int(A) the interior of A. Some sources
use the notation A◦ for the interior of A.

• We let cl(A) = {x ∈ X : x is a closure point of A}, and call cl(A) the closure of A. Some sources use
the notation A for the closure of A.

To get a feel for these definitions, let’s consider some examples. Working in R with the usual metric,
consider the set

A = {x ∈ R : 0 ≤ x < 1} ∪ {2} ∪
{
4− 1

n
: n ∈ N+

}
.

Although we will not work through careful proofs now, we have the following:

• int(A) = (0, 1): Intuitively, we can expand any element of (0, 1) to a neighborhood that will still be a
subset of A, but this will not work for 0 or any of the other points.

• cl(A) = [0, 1]∪{2, 4}∪
{
4− 1

n : n ∈ N+
}

: All of the points of A are closure points, and now we include
both 1 and 4 because there are points of A that are arbitrarily close to these.

• {x ∈ R : x is a limit point of A} = [0, 1] ∪ {4}: Here we can find points of A arbitrarily close to 4 that
are distinct from 4, but the same can not be said of the points 2 and 4− 1

n .

If we instead consider the subset Q ⊆ R, we obtain the following:

• int(Q) = ∅: We know that every open interval contains irrationals.

• cl(Q) = R: Given any x ∈ R and any ε > 0, we know that the open interval Bε(x) contains a rational
by the Density of Q in R.

• {x ∈ R : x is a limit point of Q} = R: Using the Density of Q and R a couple of times, given any
x ∈ R and any ε > 0, we know that the open interval Bε(x) contains several rationals, so will contain
a rational distinct from x.

We start with some simple properties of the interior and closure. The proofs are exercises.

3



Proposition 1.11. Let (X, d) be a metric space. For every A ⊆ X, we have int(A) ⊆ A ⊆ cl(A).

Proposition 1.12. Let (X, d) be a metric space. If A ⊆ B ⊆ X, then int(A) ⊆ int(B) and cl(A) ⊆ cl(B).

A point x is in cl(A) if it can be well-approximated by points of A (because we can find points of A that
are arbitrarily close to x). Another way to say that x can be well-approximated by points of A is to say that
we can find a sequence from A that converges to x. We now prove that these two concepts coincide.

Proposition 1.13. Let (X, d) be a metric space, let A ⊆ X and let x ∈ X. The following are equivalent:

1. x ∈ cl(A).

2. There exists a sequence 〈an〉 with an ∈ A for all n ∈ N+ such that 〈an〉 converges to x.

Proof. First, we assume (1), i.e. that x ∈ cl(A). We define a sequence 〈an〉 as follows. Given n ∈ N+, we
have that 1

n > 0, so we know that B 1
n
(x)∩A 6= ∅, and we choose an to be some element of the nonempty set

B 1
n
(x) ∩ A. Notice that an ∈ A for all n ∈ N+ by definition. We show that 〈an〉 converges to x. Let ε > 0.

Fix N ∈ N+ with N > 1
ε . Now given any n ≥ N , we know that 1

n ≤ 1
N , so

d(an, x) <
1

n
(since an ∈ B 1

n
(x))

≤ 1

N
< ε.

Therefore, 〈an〉 converges to x.
Conversely, assume (2), and fix a sequence 〈an〉 with an ∈ A for all n ∈ N+ such that 〈an〉 converges

to x. We show that x ∈ cl(A). Let ε > 0. Since 〈an〉 converges to x, we can fix N ∈ N+ such that for all
n ≥ N , we have d(an, x) < ε. In particular, we have d(aN , x) < ε, and hence aN ∈ Bε(x). Since aN ∈ A by
assumption, we conclude that Bε(x) ∩ A is nonempty. We have shown that Bε(x) ∩ A 6= ∅ for every ε > 0,
so it follows that x ∈ cl(A).

For limit points, there is a similar characterization where we change the sequence to require that we never
use the point x itself.

Proposition 1.14. Let (X, d) be a metric space, let A ⊆ X and let x ∈ X. The following are equivalent:

1. x is a limit point of A.

2. There exists a sequence 〈an〉 with an ∈ A and an 6= x for all n ∈ N+ such that 〈an〉 converges to x.

Proof. Adapt the proof of Proposition 1.13. The details are left as an exercise.

1.3 Open and Closed Sets
Let (X, d) be a metric space. Recall from Proposition 1.11 that

int(A) ⊆ A ⊆ cl(A)

for every A ⊆ X. Sets A that achieve equality on one of these containments are given a special name.

Definition 1.15. Let (X, d) be a metric space, and let A ⊆ X.

1. We say that A is open if A ⊆ int(A), i.e. if every element of A is an interior point of A. Notice that
this is equivalent to saying that A = int(A).
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2. We say that A is closed if cl(A) ⊆ A, i.e. if every closure point of A is an element of A. Notice that
this is equivalent to saying that A = cl(A).

Working in R with the usual metric, every open interval (c, d) is an open set and every closed interval
[c, d] is a closed set (these are good exercises). Notice that ∅ and R each trivially satisfy the two definitions,
so ∅ and R are both open and closed. There also exist sets that are neither open nor closed, such as [c, d)
and Q. There exist many other sets aside from intervals that are either open or closed. In order to construct
some examples, we first show that the collection of open (resp. closed) sets are closed under finite unions
and finite intersections.

Proposition 1.16. Let (X, d) be a metric space, and let A1, A2, . . . , An ⊆ X.

1. If each Ai is open, then both A1 ∪A2 ∪ · · · ∪An and A1 ∩A2 ∩ · · · ∩An are open.

2. If each Ai is closed, then both A1 ∪A2 ∪ · · · ∪An and A1 ∩A2 ∩ · · · ∩An are closed.

Proof.

1. Assume that each Ai is open.

• A1 ∪A2 ∪ · · · ∪An is open: Let x ∈ A1 ∪A2 ∪ · · · ∪An be arbitrary. Since x ∈ A1 ∪A2 ∪ · · · ∪An,
we can fix an i with x ∈ Ai. Since Ai is open, we know that x ∈ int(Ai), so we can fix ε > 0 such
that Bε(x) ⊆ Ai. Since Ai ⊆ A1 ∪ A2 ∪ · · · ∪ An, it follows that Bε(x) ⊆ A1 ∪ A2 ∪ · · · ∪ An.
Therefore, x ∈ int(A1 ∪A2 ∪ · · · ∪An).

• A1 ∩ A2 ∩ · · · ∩ An is open: Let x ∈ A1 ∩ A2 ∩ · · · ∩ An be arbitrary. For each i, we have that
x ∈ Ai and Ai is open, so we can fix εi > 0 with Bεi(x) ⊆ Ai. Let ε = min{ε1, ε2, . . . , εn},
and notice that ε > 0. As εi ≤ ε for all i, it follows that Bε(x) ⊆ Bεi(x) ⊆ Ai for all i, so
Bε(x) ⊆ A1 ∩A2 ∩ · · · ∩An. Therefore, x ∈ int(A1 ∩A2 ∩ · · · ∩An).

2. Assume that each Ai closed.

• A1 ∪A2 ∪ · · · ∪An is closed: Let x ∈ cl(A1 ∪A2 ∪ · · · ∪An) be arbitrary. By Proposition 1.13, we
can fix a sequence 〈am〉 with am ∈ A1∪A2∪· · ·∪An for all m ∈ N+ and such that 〈am〉 converges
to x. Since N+ is infinite, there must exist an i such that {m ∈ N+ : am ∈ Ai} is infinite. Fix such
an i. We can take the values of m from the set {m ∈ N+ : am ∈ Ai} to extract a subsequence of
〈am〉 consisting of elements of Ai. Since a subsequence of a convergent sequence must converge
to the same limit (this is a nice exercise), it follows from Proposition 1.13 that x ∈ cl(Ai). Since
Ai is closed, we conclude that x ∈ Ai, and hence x ∈ A1 ∪A2 ∪ · · · ∪An.

• A1 ∩ A2 ∩ · · · ∩ An is closed: Let x ∈ cl(A1 ∩ A2 ∩ · · · ∩ An) be arbitrary. We first show that
x ∈ cl(Ai) for all i. Let ε > 0 be arbitrary. Since x ∈ cl(A1 ∪ A2 ∪ · · · ∪ An), we know that
Bε(x) ∩ (A1 ∩ A2 ∩ · · · ∩ An) 6= ∅. Now Bε(x) ∩ (A1 ∩ A2 ∩ · · · ∩ An) is a subset Bε(x) ∩ Ai for
all i, so Bε(x) ∩ Ai 6= ∅ for all i. Since ε > 0 was arbitrary, we conclude that x ∈ cl(Ai) for all i.
Recall that each Ai is closed, so it follows that x ∈ Ai for all i, and hence x ∈ A1 ∩A2 ∪ · · · ∩An.

We can use Proposition 1.16 to provide other examples of open and closed sets in R under the usual
metric. For example, since (0, 1) and (2, 3) are both open, it follows that (0, 1) ∪ (2, 3) is open. Since [1, 2]
and [2, 3] are both closed, we conclude that {2} = [1, 2] ∩ [2, 3] is closed. More generally, a straightforward
argument shows that in any metric space (X, d), the one-element set {x} is closed for each x ∈ X. Using
Proposition 1.16, any finite subset of a metric space is closed.

Proposition 1.17. Let (X, d) be a metric space. For any x ∈ X and ε > 0, the set Bε(x) is open.
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Proof. Let x ∈ X and ε > 0 be arbitrary. Let y ∈ Bε(x) be arbitrary. By definition, we then have that
d(x, y) < ε. Let δ = ε− d(x, y) > 0. We claim that Bδ(y) ⊆ Bε(x). To see this, let z ∈ Bδ(y) be arbitrary.
We then have that d(y, z) < δ, so

d(x, z) ≤ d(x, y) + d(y, z)

< d(x, y) + δ

= d(x, y) + (ε− d(x, y))

= ε,

and hence z ∈ Bε(x). Since z ∈ Bδ(y) was arbitrary, it follows that Bδ(y) ⊆ Bε(x), so y is an interior point
of Bε(x). Therefore, Bε(x) is open.

Our next result provides another way to construct open and closed sets. At first, it might appear
immediate from the definition that int(A) is always an open set. However, there is some real subtlety here.
Recall that to show that a set B is open, we have to prove that B ⊆ int(B). Thus, to show that int(A) is
open, we have to prove that int(A) ⊆ int(int(A)). Similarly, to show that cl(A) is closed, we have to prove
that cl(cl(A)) ⊆ cl(A).

Proposition 1.18. Let (X, d) be a metric space. For all A ⊆ X, int(A) is open and cl(A) is closed.

Proof. Let A ⊆ X be arbitrary.

• We first show that int(A) is open by proving that int(A) ⊆ int(int(A)). Let x ∈ int(A) be arbitrary.
We need to show that x is an interior point of int(A). Since x is an interior point of A, we can fix
ε > 0 such that Bε(x) ⊆ A. Using Proposition 1.12, we then have int(Bε(x)) ⊆ int(A). We know that
int(Bε(x)) = Bε(x) from Proposition 1.17, and hence Bε(x) ⊆ int(A). Since ε > 0, we conclude that x
is an interior point of int(A), which completes the proof.

• We now show that cl(A) is closed by proving that cl(cl(A)) ⊆ cl(A). Let x ∈ cl(cl(A)) be arbitrary, so x
is a closure point of cl(A). We need to show that x is a closure point of A. Let ε > 0 be arbitrary. Since
x is a closure point of cl(A), we know know that Bε/2(b) ∩ cl(A) 6= ∅, so we fix a y ∈ Bε/2(x) ∩ cl(A).
Since y ∈ cl(A), we know that y is a closure point of A, so Bε/2(y) ∩ A 6= ∅, and hence we can fix a
z ∈ Bε/2(y) ∩A. We then have

d(x, z) ≤ d(x, y) + d(y, z)

<
ε

2
+

ε

2
(since y ∈ Bε/2(x) and z ∈ Bε/2(y))

= ε,

so z ∈ Bε(x). Since we also have z ∈ A, we conclude that Bε(x) ∩ A 6= ∅. As ε > 0 was arbitrary, it
follows that x is a closure point of A, i.e. that x ∈ cl(A), completing the proof.

There is a strong complementary relationship between open and closed sets. For a simple example, an
interior point is one that satisfies a “there exists” statement, while a closure point is one that satisfies a “for
all” statement. More interestingly, in the proof of Proposition 1.16, we saw that the union proof for open
sets was easier than the intersection proof, while the intersection proof for closed sets was easier than the
union proof. We can formalize these vague ideas in the following important result.

Proposition 1.19. Let (X, d) be a metric space and let A ⊆ X. We have that A is open if and only if
Ac = X\A is closed.
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Proof. Suppose first that A is open. We argue that Ac is closed. Let x ∈ cl(Ac) be arbitrary, so Bδ(x)∩Ac 6= ∅
for every δ > 0. If x /∈ Ac, then x ∈ A, so we can fix δ > 0 with Bδ(x) ⊆ A (since A is open), which implies
that Bδ(x) ∩Ac = ∅, a contradiction. Therefore, we must have x ∈ Ac. It follows that Ac is closed.

Suppose conversely that Ac is closed. We argue that A is open. Let x ∈ A be arbitrary. Since Ac is
closed and x /∈ Ac, we can fix δ > 0 such that Bδ(x) ∩Ac = ∅. We then have Bδ(x) ⊆ A, so x is an interior
point of A. Therefore, A is open.

We can use this result together with a few simple set-theoretic facts to save work. For example, suppose
that we have proved that whenever A1, A2, . . . , An are open sets, we have that A1 ∪ A2 ∪ · · · ∪ An is open
(i.e. the very first part of Proposition 1.16). We can use this fact together with Proposition 1.19 to argue
that whenever A1, A2, . . . , An are closed sets, we have that A1 ∩ A2 ∩ · · · ∩ An is closed (i.e. the very last
part of Proposition 1.16). To see this, let A1, A2, . . . , An be arbitrary closed sets. We then have that each
Ac

i is both open by Proposition 1.19, so we can conclude that Ac
1 ∪Ac

2 ∪ · · · ∪Ac
n is open. Using the fact that

Ac
1 ∪Ac

2 ∪ · · · ∪Ac
n = (A1 ∩A2 ∩ · · · ∩An)

c,

it follows that (A1 ∩ A2 ∩ · · · ∩ An)
c is open. Since A1 ∩ A2 ∩ · · · ∩ An = ((A1 ∩ A2 ∩ · · · ∩ An)

c)c, we can
use Proposition 1.19 again to conclude that A1 ∩A2 ∩ · · · ∩An is closed.

Although finite unions and intersections are interesting and fundamental, we can also consider infinite
unions and intersections. Given a sequence A1, A2, A3, . . . of sets, we define

∞⋃
n=1

An = {x : There exists n ∈ N+ with x ∈ An},

∞⋂
n=1

An = {x : For all n ∈ N+, we have x ∈ An}.

In this case, we have a family of sets that are indexed by positive natural numbers. Can we do the same
with other “index sets”? What if we had a set Ar for each r ∈ R? After a little thought, we see that there
is nothing special about using N+ above. In fact, given any set I, if we have a set Ai for each i ∈ I, then
we can still talk about the “general union” and “general intersection”. When we use a set I to index sets in
this way, we naturally call I an index set. If we have such a set I, together with sets Ai for each i ∈ I, then
we define ⋃

i∈I

Ai = {x : There exists i ∈ I with x ∈ Ai}⋂
i∈I

Ai = {x : For all i ∈ I, we have x ∈ Ai}

We now ask whether the general union, or general intersection, of a family of open (resp. closed) sets is still
open (resp. closed). Unfortunately, the answer is no, even for families indexed by N+. For example, working
in R with the usual metric, the open interval (− 1

n ,
1
n ) is open for each n ∈ N+, but⋂

n∈N+

(−1/n, 1/n) = {0},

which is not open. We can even get sets that are neither open nor closed in this way. For example, we have⋂
n∈N+

(0, 1 + 1/n) = (0, 1].
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Similarly, the general union of closed sets need not be closed, even in the case where we index over N+. For
example, we have ⋃

n∈N+

[1/n, 3− (1/n)] = (0, 3).

For a more interesting example, if we use Q as our index set, and let Aq = {q} for all q ∈ Q, then each Aq

is closed, but ⋃
q∈Q

{q} = Q,

which is neither open nor closed. Fortunately, we do have the following result which says that open sets
behave well under arbitrary unions, and closed sets behave well under arbitrary intersections. The proof
simply follows the outline of the corresponding arguments in the finite case (Proposition 1.20). It is instructive
(and strongly encouraged!) to look at the other two arguments in that proof to see why they do not adapt
to the infinite case.

Proposition 1.20. Let (X, d) be a metric space, let I an index set, and suppose we have sets Ai for each
i ∈ I.

1. If Ai is open for all i ∈ I, then
⋃

i∈I Ai is open.

2. If Ai is closed for all i ∈ I, then
⋂

i∈I Ai is closed.

Proof. Assume that Ai is open for all i ∈ I. Let x ∈
⋃

i∈I Ai be arbitrary. By definition, we can then fix
j ∈ I with x ∈ Aj . Since Aj is open, we know that xint(Aj), so we can fix ε > 0 such that Bε(x) ⊆ Aj .
Since Aj ⊆

⋃
i∈I Ai, it follows that Bε(x) ⊆

⋃
i∈I Ai. Therefore, x ∈ int(

⋃
i∈I Ai).

Assume now that Ai is closed for all i. Let x ∈ cl(
⋂

i∈I Ai) be arbitrary. We first show that x ∈ cl(Ai)
for all i. Let ε > 0 be arbitrary. Since x ∈ cl(

⋂
i∈I Ai), we know that Bε(x) ∩ (

⋂
i∈I Ai) 6= ∅. Now

Bε(x) ∩ (
⋂

i∈I Ai) is a subset Bε(x) ∩ Ai for all i, so Bε(x) ∩ Ai 6= ∅ for all i. Since ε > 0 was arbitrary, we
conclude that x ∈ cl(Ai) for all i. Recall that each Ai is closed, so it follows that x ∈ Ai for all i, and hence
x ∈

⋂
i∈I Ai.

We can use these ideas to construct an example of a very interesting closed set in R that has some
counterintuitive properties.

Definition 1.21. We define a sequence of sets recursively. We start by letting C0 = [0, 1]. Suppose that Cn

is a pairwise disjoint union of 2n many closed intervals, each of length 1
3n . We then let Cn+1 be the result of

removing the open intervals that are the middle third of each interval in Cn, so Cn+1 is a pairwise disjoint
union of 2n+1 many closed intervals, each of length 1

3n+1 . This completes the recursive definition of the sets
Cn. We then define

C =

∞⋂
n=0

Cn.

The set C is called the Cantor set.

Notice that each Cn is closed (because it is a finite union of closed intervals), and hence C is closed by
Proposition 1.20. The set C has many interesting properties. If one tries to determine how “big” C is, one
approach would be to determine how much of [0, 1] we have removed at each stage. Notice that we removed
an interval of length 1

3 when constructing C1, then removed 2 intervals of length 1
9 when constructing C2,

then removed 4 = 22 intervals of length ( 13 )
3 when constructing C3, etc. If we follow this logic, the we can

determine the total amount removed by looking at the infinite series

1

3
+ 2 ·

(
1

3

)2

+ 22 ·
(
1

3

)3

+ 23 ·
(
1

3

)4

+ · · · =
∞∑

n=0

(
1

3

)
·
(
2

3

)n

.
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Since this is a geometric series and | 23 | < 1, we know that it converges and that

∞∑
n=0

(
1

3

)
·
(
2

3

)n

=
1/3

1− (2/3)
=

1/3

1/3
= 1.

In other words, it appears that we have removed the full length of [0, 1]. However, this does not mean that
C = ∅. In fact, we certainly have 0, 1 ∈ C. Moreover, one can prove inductively that the endpoints of any
Cn are endpoints of Cm for all m ≥ n, and hence C contains the endpoints of each of the intervals in Cn.
Thus, C is infinite. More surprisingly, C is uncountable!

1.4 Compact Sets
Definition 1.22. Let (X, d) be a metric space and let A ⊆ X. An open cover of A is a collection of open
sets {Di : i ∈ I}, where I is some index set, such that A ⊆

⋃
i∈I Di.

Working in R (with the usual metric), each open interval (−n, n) for n ∈ N+ is an open set. Thus, we
can consider the collection {(−n, n) : n ∈ N+} of all of these open sets. In this case, our index set is I = N+,
and we are letting Di = (−i, i) for each i ∈ I. Notice that for every x ∈ R, there exists n ∈ N+ with
|x| < n, from which it follows that x ∈ (−n, n). We have R ⊆

⋃
n∈N+(−n, n), so {(−n, n) : n ∈ N+} is an

open cover of R. In fact, given any A ⊆ R, the collection {(−n, n) : n ∈ N+} is an open cover of A because
A ⊆ R ⊆

⋃
n∈N+(−n, n)

For another example, consider the collection of open sets {(1/n, 1) : n ∈ N+}. Here, we are again using
I = N+, but now we are letting Di = (1/i, 1) for each i ∈ N+ (and using D1 = (1, 1) = ∅, which is also
open). It is straightforward to check that {(1/n, 1) : n ∈ N+} is an open cover of (0, 1). As above, given any
A ⊆ (0, 1), the collection {(1/n, 1) : n ∈ N+} is also an open cover of A. For example, {(1/n, 1) : n ∈ N+}
is an open cover of [ 14 , 1). However, notice that {(1/n, 1) : n ∈ N+} is not an open cover of [0, 1), because
0 /∈ (1/n, 1) for any n ∈ N+.

Definition 1.23. Let (X, d) be a metric space and let A ⊆ X. We say that A is compact if every open cover
of A has a finite subcover, i.e. whenever {Di : i ∈ I} is an open cover of A, there exists a finite set F ⊆ I
such that A ⊆

⋃
i∈F Di.

The definition of compact may be the least intuitive definition that you have seen in mathematics up to
this point. It is certainly abstract, and it takes some time to develop an appreciation for its elegance and
power. We start by giving a couple of examples of sets that are not compact in R (under the usual metric):

• The set R itself is not compact: As we saw above, the collection of sets {(−n, n) : n ∈ N+} is an
open cover of R. However, there is no finite F ⊆ N+ with R ⊆

⋃
n∈F (−n, n). To see this, suppose

that F ⊆ N+ is finite. If F = ∅, then
⋃

n∈F (−n, n) = ∅, which is certainly not an open cover of R.
Suppose then that F 6= ∅, and let N = max(F ). We then have (−n, n) ⊆ (−N,N) for all n ∈ F , so⋃

n∈F (−n, n) = (−N,N), and hence {(−n, n) : n ∈ F} is not an open cover of R. We have shown that
the open cover {(−n, n) : n ∈ N+} of R does not have a finite subcover, so R is not compact.

• The set (0, 1) is not compact: As we saw above, the collection of sets {(1/n, 1) : n ∈ N+} is an open
cover of (0, 1). However, there is no finite F ⊆ N+ with (0, 1) ⊆

⋃
n∈F (1/n, 1). To see this, suppose

that F ⊆ N+ is finite. We may assume that F 6= ∅ as above, and let N = max(F ). We then have
(1/n, 1) ⊆ (1/N, 1) for all n ∈ F , so

⋃
n∈F (1/n, 1) = (1/N, 1), and hence {(1/n, 1) : n ∈ F} is not an

open cover of (0, 1). We have shown that the open cover {(1/n, 1) : n ∈ N+} of (0, 1) does not have a
finite subcover, so (0, 1) is not compact.

Consider the half-open interval [ 14 , 1) ⊆ R. As mentioned above, the collection of sets {(1/n, 1) : n ∈ N+}
is an open cover of [ 14 , 1). Now this particular open cover of [ 14 , 1) does have a finite subcover. For example,

9



letting F = {5}, we have
⋃

n∈F (1/n, 1) = (1/5, 1), which is a finite subcover of [ 14 , 1). There are also many
other finite subsets of N+ that also work, because any finite F ⊆ N+ which contains an element greater than
4 will satisfy [1/4, 1) ⊆

⋃
n∈F (1/n, 1). However, it is important to note that we can not conclude from this

one collection that [1/4, 1) is compact, as the definition of compact requires that every open cover has a
finite subcover. In this case, the collection {(0, 1− 1/n) : n ∈ N+} is an open cover of [1/4, 1) that does not
have a finite subcover, so in fact [1/4, 1) is not compact.

With this background, it might seem very difficult to prove that a given set A ⊆ R is compact. In general,
this is certainly true, but it is relatively straightforward to handle finite sets.
Proposition 1.24. Let (X, d) be a metric space. Every finite subset of X is compact.
Proof. Let A ⊆ X be finite. If A = ∅, then A is trivially compact because given any open cover {Di : i ∈ I}
of ∅, we can let F = ∅. Suppose then that A 6= ∅, and write A = {a1, a2, . . . , an}. Let {Di : i ∈ I} be an
arbitrary open cover of A. For each k with 1 ≤ k ≤ n, we have ak ∈

⋃
i∈I Di, so we can fix ik ∈ I with

ak ∈ Dik . Let F = {i1, i2, . . . , in}. We then have that F is finite and A ⊆
⋃

i∈F Di, so the open cover
{Di : i ∈ I} of A has a finite subcover.

Perhaps surprisingly, there do exist infinite compact sets. Before trying to come up with an example,
we first prove the following result, which restricts the potential options. The proof is a generalization of the
important examples we discussed above.
Proposition 1.25. Let (X, d) be a metric space. Every compact subset of X is both closed and bounded.
Proof. Let A ⊆ X be a compact set. If A = ∅, then it is trivially closed and bounded, so assume that A 6= ∅.

• We first prove that A is bounded. Since A 6= ∅, we can fix a ∈ A. Consider the collection of sets
{Br(a) : r ∈ N+}. We have X =

⋃
n∈N+ Br(a), so we know that {Br(a) : r ∈ N+} is an open cover of

A. As A is compact, we can fix a finite set F ⊆ N+ with A ⊆
⋃

i∈F Br(a). Since A 6= ∅, we know that
F 6= ∅, so let m = max(F ). We then have A ⊆ Bm(a), so A is bounded (see the homework).

• We next prove that A is closed, which we do by showing that the complement Ac is open. Let x ∈ Ac

be arbitrary. We show that x ∈ int(Ac). For each n ∈ N+, let

Dn = {y ∈ X : d(x, y) > 1/n}.

Since each {y ∈ X : d(x, y) ≤ 1/n} is closed (by the homework) and

Dn = X\{y ∈ X : d(x, y) ≤ 1/n},

we can use Proposition 1.19 to conclude that each Dn is open. Notice that⋃
n∈N+

Dn = X\{x}.

Since x /∈ A, we have
A ⊆

⋃
n∈N+

Dn,

and hence {Dn : n ∈ N+} is an open cover of A. Using the fact that A is compact, we can fix a finite
set F ⊆ N+ such that A ⊆

⋃
n∈F Dn. Since A 6= ∅, we know that F 6= ∅, so let N = max(F ). Since

Dm ⊆ Dn whenever m ≤ n, it follows that
⋃

n∈F Dn = DN . Therefore, we have A ⊆ DN , i.e.

A ⊆ {y ∈ X : d(x, y) > 1/N}.

It follows that
{y ∈ X : d(x, y) < 1/N} ⊆ Ac,

which is to say that B1/N (x) ⊆ Ac. Hence x ∈ int(Ac). We have shown that every element of Ac is an
element of int(Ac), so Ac is open. Using Proposition 1.19, we conclude that A = (Ac)c is closed.
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Our next result tells us that if we happen to stumble across a “big” compact set in metric space, then
we will be able to obtain many other compact sets inside of it.

Proposition 1.26. Let (X, d) be a metric space. Every closed subset of a compact set is compact. In other
words, if A ⊆ X is compact, and B ⊆ A is closed, then B is compact.

Proof. Suppose that A ⊆ X is compact and B ⊆ A is closed. Let {Di : i ∈ I} be an arbitrary open cover of
B. Since B is closed, we know from Proposition 1.19 that Bc is open. Notice that {Bc} ∪ {Di : i ∈ I} is an
open cover of X, and so it is certainly an open cover of A. Since A is compact, we can fix a finite set F ⊆ I
such that {Bc} ∪ {Di : i ∈ F} is an open cover of A. As B ⊆ A, we know that {Bc} ∪ {Di : i ∈ F} is an
open cover of B. But B ∩Bc = ∅, so {Di : i ∈ F} is a finite subcover of B.

For the rest of this section, we will turn our attention to Rn (with the usual metric), as the situation is
more intricate in general metric spaces. We start by examining R. If we are looking for an example of an
infinite compact subset of R, then Proposition 1.25 tells us that we must look to closed and bounded sets.
The simplest example of an infinite closed and bounded set is a closed interval. We now prove that every
closed interval is compact.

Proposition 1.27. Let c, d ∈ R with c < d. We then have that [c, d] is a compact subset of R.

Proof. Let {Di : i ∈ I} be an arbitrary open cover of [c, d]. Let

B = {x ∈ [c, d] : There exists a finite set F ⊆ I with [c, x] ⊆
⋃
i∈F

Di}.

Notice that c ∈ B trivially because c is an element of some Di, and we can fix such an i and let F = {i}.
Also, B is bounded above by d. Thus, we can let s = supB. Since d is an upper bound of B, it follows that
s ≤ d. Also, since c ∈ B, we have c ≤ s.

We first claim that s = d. Suppose instead that s < d. Since c ≤ s, we have s ∈ [c, d], so we can fix a
j ∈ I with s ∈ Dj . Since Dj is open, we can fix ε > 0 with Vε(s) ⊆ Dj . Now s − ε < s, so s − ε is not an
upper bound of B, and hence we can fix x ∈ B with x > s − ε. By definition of B, we can fix a finite set
F ⊆ I with [c, x] ⊆

⋃
i∈F Di. Letting G = F ∪ {j} and δ = min{d− c, ε

2} > 0, we then have that G is finite
and s < s+ δ ≤ d. Furthermore, [c, s+ δ] ⊆

⋃
i∈G Di, so s+ δ ∈ B, contradicting the fact that s is an upper

bound of B. Therefore, we must have s = d.
We now show that the open cover {Di : i ∈ I} of [c, d] has a finite subcover. Since {Di : i ∈ I} is an

open cover of [c, d], we can fix j ∈ I with d ∈ Dj . Since Dj is open, we can fix ε > 0 with Vε(s) ⊆ Dj . As
d− ε < d, we know that d− ε is not an upper bound of B, and hence we can fix x ∈ B with x > d− ε. By
definition of B, we can fix a finite set F ⊆ I with [c, x] ⊆

⋃
i∈F Di. Letting G = F ∪ {j}, we then have that

G is finite and that [c, d] ⊆
⋃

i∈G Di. Thus, we have found a finite subcover of [c, d].

Our next goal is to lift this result to Rn. The natural analogue of a closed and bounded interval in R, is a
rectangle [c1, d1]× [c2, d2] in R2, a rectangular prism [c1, d1]× [c2, d2]× [c3, d3] in R3, etc. In order to ladder
up to these higher dimensions using Proposition 1.27, we will prove a general result about the product of
two compact subsets of Euclidean space. We first need the following lemma.

Lemma 1.28. Suppose that D ⊆ Rm+n is open, and that (x1, . . . , xm, xm+1, . . . , xm+n) ∈ D. There exists
open sets U ⊆ Rm and W ⊆ Rn such that (x1, . . . , xn) ∈ U , (xm+1, . . . , xm+n) ∈ W , and U ×W ⊆ D.

Proof. Since D is open and (x1, . . . , xm, xm+1, . . . , xm+n) ∈ D, we can fix ε > 0 with Bε(x1, . . . , xn, xn+1) ⊆
D. Let U = Bε/

√
2(x1, . . . , xm) ⊆ Rm and let W = Bε/

√
2(xm+1, . . . , xm+n) ⊆ Rn and note that U and W
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are open. For any (y1, . . . , ym, ym+1, . . . , ym+n) ∈ U ×W , we have (x1 − y1)
2 + · · ·+ (xm − ym)2 ≤ ε2

2 and
(xm+1 − ym+1)

2 + · · ·+ (xm+n − ym+n)
2 < ε2

2 , so

√
(x1 − y1)2 + · · ·+ (xn − yn)2 + (xn+1 − yn+1)2 + · · ·+ (xm+n − ym+n)2 ≤

√
ε2

2
+

ε2

2

=
√
ε2

= ε,

and hence (y1, . . . , yn, ym+1, . . . , ym+n) ∈ Bε(x1, . . . , xm, xm+1, . . . , xm+n) ⊆ D.

Proposition 1.29. Let A ⊆ Rm and C ⊆ Rn both be compact. We then have that A×C ⊆ Rm+n is compact.

Proof. Let {Di : i ∈ I} be an arbitrary open cover of A × C. Each (a, c) ∈ A × C is an element some
Di, so by Lemma 1.28 we can fix open sets U(a,c) ⊆ Rm and W(a,c) ⊆ Rn with (a, c) ∈ U(a,c) × W(a,c)

and where U(a,c) ×W(a,c) contained in some Di. It suffices to find a finite subcover of A × C from the set
{U(a,c) × W(a,c) : (a, c) ∈ A × C}, because we can take one such corresponding i ∈ I for each (a, c) in our
finite set in order to obtain a finite subcover of {Di : i ∈ I}.

Now fix an element a ∈ A, and consider the corresponding cross section. The set {W(a,c) : c ∈ C} is an
open cover of the compact set C, so we can fix a finite Ga ⊆ C such that {W(a,c) : c ∈ Ga} covers C. For
each a ∈ A, let Ua =

⋂
c∈Ga

U(a,c), and note that Ua ⊆ Rn is open by Proposition 1.16. Now {Ua : a ∈ A} is
an open cover of the compact set A, so we can fix a finite F ⊆ A such that {Ua : a ∈ F} covers A. The set
{Ua ×W(a,c) : a ∈ F, c ∈ Ga} covers A× C, and hence {U(a,c) ×W(a,c) : a ∈ F, c ∈ Ga} covers A× C, so we
have found a finite subcover of A× C from the set {U(a,c) ×W(a,c) : (a, c) ∈ A× C}.

Corollary 1.30. Let c1, . . . , cn, d1, . . . , dn ∈ R with ci < di for all i. We then have that [c1, d1]×· · ·× [cn, dn]
is a compact subset of Rn.

Proof. By induction using Proposition 1.27 and Proposition 1.29.

We have now down all of the hard work to give a few other characterizations of compact sets in Rn.
I should note that (1) and (3) are equivalent in any metric space, although the proof is somewhat more
complicated there. However, in a general metric space, it is absolutely possible for to have closed and
bounded sets that are not compact. The replacement for (2) in this more general setting is more complicated.

Theorem 1.31 (Heine-Borel). Let A ⊆ Rn. The following are equivalent:

1. A is compact.

2. A is closed and bounded.

3. Every sequence 〈ak〉 from A (i.e. where ak ∈ A for all k ∈ N+) has a subsequence that converges to an
element of A.

Proof. • (1) ⇒ (2): Immediate from Proposition 1.25.

• (2) ⇒ (1): Suppose that A is closed is bounded. Since A is bounded, we can fix an M ∈ R with
A ⊆ [−M,M ]n. Using Corollary 1.30, we know that [−M,M ]n is compact, so as A is closed, we can
use Proposition 1.26 to conclude that A is compact.

• (2) ⇒ (3): Suppose that A is closed and bounded, and let 〈ak〉k∈N+ be a sequence from A. For each
k, let ak = (xk,1, xk,2, . . . , xk,n) where xk,i ∈ R. The sequence 〈xk,1〉k∈N+ is a bounded sequence in R,
so we can extract a convergent subsequence of it by the Bolzano-Weierstrass Theorem. Let I1 be the
corresponding infinite set of indices of this sequence, and let b1 be the limit of this subsequence. Now

12



〈xk,2〉k∈I1 is a bounded sequence in R, so we can extract a convergent subsequence of it by the Bolzano-
Weierstrass Theorem. Let I2 ⊆ I1 be the corresponding infinite set of indices of this sequence, and let
b1 be the limit of this subsequence. Continue in this way, repeatedly thinning out the infinite set of
indices, until we arrive at In together with corresponding limit bn. Since 〈xk,1〉k∈In is a subsequence of
〈xk,1〉k∈I1 , it also converges to b1. In general, for each i, the sequence 〈xk,i〉k∈In converges to bi. Using
(the generalization of) Problem 4 on Homework 1, the subsequence 〈ak〉k∈In of 〈ak〉k∈N+ converges to
(b1, b2, . . . , bn). Since ak ∈ A for all k ∈ In, we know from Proposition 1.13 that (b1, b2, . . . , bn) ∈ cl(A).
Using the fact that A is closed, we conclude that (b1, b2, . . . , bn) ∈ A.

• (3) ⇒ (2): We prove the contrapositive, i.e. that if A is either not closed or not bounded, then there
is a sequence 〈ak〉 from A such that no subsequence of 〈ak〉 converges to a point of A.

– Suppose first that A is not closed. We then have that cl(A) 6= A. Since we know that A ⊆ cl(A)
from Proposition 1.11, we can fix b ∈ cl(A)\A. As b ∈ cl(A), we can use Proposition 1.13 to fix a
sequence 〈ak〉 from A that converges to b. Now every subsequence of 〈ak〉 will also converge to b
(a good exercise), so in particular no subsequence of 〈ak〉 converges to a point of A.

– Suppose that A is not bounded. Define a sequence 〈ak〉 as follows. Given k ∈ N+, we know that
A 6⊆ Bk(~0) because A is not bounded, so can let ak be some element of A with d(~0, ak) ≥ k. Now
every subsequence of 〈ak〉 will also fail to be bounded (another good exercise is to check that
convergent sequences are bounded), and hence every subsequence of A will fail to converge. In
particular, no subsequence of 〈ak〉 converges to a point of A.

1.5 Continuous Functions
We first generalize the definition of continuous to metric spaces in the natural way.

Definition 1.32. Let (X, d1) and (Y, d2) be metric spaces, let f : X → Y , and let a ∈ X. We say that f
is continuous at a if for all ε > 0, there exists δ > 0 such that for all x ∈ X with d1(x, a) < δ, we have
d2(f(x), f(a)) < ε.

Definition 1.33. Let (X, d1) and (Y, d2) be metric spaces and let f : X → Y . We say that f is continuous
if it is continuous at every a ∈ X.

Our first task is give an incredibly powerful characterization of continuous functions in terms of preimages
of sets in the codomain. We start with the following notation, which is truly terrible but entrenched and
standard.

Definition 1.34. Let f : A → B be a function.

• For any C ⊆ A, we define f(C) = {f(c) : c ∈ C}.

• For any D ⊆ B, we define f−1(D) = {a ∈ A : f(a) ∈ D}.

For our purposes, we will find that the latter of these two is significantly more important. One of the
primary reasons why is that preimages interact well with all of the standard set-theoretic operations. Think
about how some of these could fail if worked with images (i.e. the first of these definitions) rather than
preimages.

Proposition 1.35. Let f : A → B be a function.

1. For any set I together with sets Di ⊆ B for each i ∈ I, we have

f−1

(⋃
i∈I

Di

)
=
⋃
i∈I

f−1(Di).
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2. For any set I indexing sets Di ⊆ B, we have

f−1

(⋂
i∈I

Di

)
=
⋂
i∈I

f−1(Di).

3. For all D1, D2 ⊆ B, we have f−1(D1\D2) = f−1(D1)\f−1(D2).

4. For all D ⊆ B, we have f−1(B\D) = A\f−1(D).

5. For all D ⊆ B, we have f(f−1(D)) ⊆ D.

Proof. Exercise.

Our main result says that a function between metric spaces is continuous exactly when the preimage of
every open set is open.

Proposition 1.36. Let (X, d1) and (Y, d2) be metric spaces. A function f : X → Y is continuous if and
only if f−1(D) is open in X whenever D is open in Y .

Proof. Suppose first that f : X → Y is continuous. Let D be an arbitrary open subset of X. We show that
f−1(D) is open. Let w ∈ f−1(D) be arbitrary. By definition, we then have f(w) ∈ D, so as D is open, we
can fix ε > 0 with Bε(f(w)) ⊆ D. Since f is continuous at w, we can fix δ > 0 such that for all x ∈ X with
d1(x,w) < δ, we have d2(f(x), f(w)) < ε. We claim that Bδ(x) ⊆ f−1(D). To see this, notice that given
any x ∈ Bδ(w), we have d1(x,w) < δ, so d2(f(x), f(w)) < ε, hence f(x) ∈ Bε(f(w)) ⊆ D, and therefore
x ∈ f−1(D). We have shown that for any w ∈ f−1(D), there exists δ > 0 such that Bδ(w) ⊆ f−1(D). Thus,
f−1(D) is open.

Suppose conversely that f : X → Y has the property that f−1(D) is open in X whenever D is open
in Y . We show that f is continuous. Let a ∈ X be arbitrary. We show that f is continuous at a. Let
ε > 0 be arbitrary. Notice that Bε(f(a)) is open in Y by Proposition 1.17, so f−1(Bε(f(a))) is open in X
by assumption. Now we trivially have f(a) ∈ Bε(f(a)), so a ∈ f−1(Bε(f(a))). Combining this with the
fact that f−1(Bε(f(a))) is open in X, we can fix δ > 0 so that Bδ(a) ⊆ f−1(Bε(f(a))). Now given any
x ∈ X with d1(x, a) < δ, we have x ∈ Bδ(a), so x ∈ f−1(Bε(f(a)), hence f(x) ∈ Bε(f(a)), and therefore
d2(f(x), f(a)) < ε. Since ε > 0 was arbitrary, we conclude that f is continuous at a. As a ∈ X was arbitrary,
it follows that f is continuous.

Continuity also interacts well with compact sets, although in this case we deal with an image rather
than a preimage. The result is usually summarized as saying that “the continuous image of a compact set is
compact”.

Proposition 1.37. Let (X, d1) and (Y, d2) be metric spaces, let f : X → Y be continuous, and let A ⊆ X
be compact. We then have that f(A) = {f(a) : a ∈ A} is compact.

Proof. Let {Di : i ∈ I} be an arbitrary open cover of f(A). By Proposition 1.36, we know that each set
f−1(Di) is open in X. Since f(A) ⊆

⋃
i∈I Di, it follows that A ⊆

⋃
i∈I f

−1(Di), so {f−1(Di) : i ∈ I} is an
open cover of A. As A is compact, we can fix a finite set F ⊆ I such that {f−1(Di) : i ∈ F} is an open cover
of A. We then have that {Di : i ∈ F} is a finite subcover of f(A).

To see the power of these results, we derive a fundamental result (with little effort) that is used throughout
Calculus.

Corollary 1.38 (Extreme Value Theorem). Let n ∈ N+, and let Rn and R have the usual metrics. If
A ⊆ Rn is closed and bounded, and f : A → R is continuous, then f achieves a maximum and minimum
value on A.

14



Proof. Since A is a closed and bounded subset of Rn, we know that A is compact from the Heine-Borel
Theorem, so f(A) is compact from Proposition 1.37. By the homework, this compact subset of R has a
maximum and minimum value.
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