Homework 21 : Due Monday, November 9

Problem 1: Chapter 12, #2ab

Problem 2: Chapter 12, #3

Problem 3: Chapter 12, #5ab

Hint: Use a bit of theory to help with the computations. You know the orbits partition X, and you know that the size of any orbit divides |G|. Once you know \mathcal{O}_x , you can use the Orbit-Stabilizer Theorem to determine $|G_x|$.

Problem 4: Let $G = \mathbb{R}$ (under addition) and let $X = \mathbb{R}^2$. Define a function from $G \times X$ to X by a * (x, y) = (x + ay, y).

a. Show that * is a action of G on X.

b. Describe the orbits of the action geometrically.

Problem 5: Let $G = S_3$ and let

 $X = \{1, 2, 3\} \times \{1, 2, 3\} = \{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)\}$

Define a function from $G \times X$ to X by $\sigma * (x, y) = (\sigma(x), \sigma(y))$. a. Show that * is a action of G on X.

b. Find the orbits of the action.