Homework 1 : Due Monday, August 30

Problem 1: Let \times be the cross product on \mathbb{R}^3 .

a. Is \times an associative operation on \mathbb{R}^3 ? Explain.

b. Does \times have an identity on $\mathbb{R}^3?$ Explain.

Problem 2: Consider the set $\mathbb{R}^{\geq 0} = \{x \in \mathbb{R} : x \geq 0\}$ of nonnegative reals. Let * be the binary operation on $\mathbb{R}^{\geq 0}$ given by exponentiation, i.e. $a * b = a^b$.

a. Is \ast an associative operation on $\mathbb{R}^{\geq 0}?$ Explain.

b. Does * have an identity on $\mathbb{R}^{\geq 0}$? Explain.

Problem 3: Let (G, \cdot, e) be a group and let $a, b, c, d \in G$. Show that

$$(a \cdot b) \cdot (c \cdot d) = (a \cdot (b \cdot c)) \cdot d$$

Problem 4: Let G be the set of all 3×3 matrices of the form

$$\begin{pmatrix} 1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 1 \end{pmatrix}$$

where $x, y, z \in \mathbb{R}$. Now we know from linear algebra that matrix multiplication is associative and that the identity matrix is $(1 \quad 0 \quad 0)$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

so the identity matrix is in G.

a. Show that if $A, B \in G$, then $AB \in G$. Thus, matrix multiplication is indeed a binary operation on G. b. Show that if $A \in G$, then A is an invertible matrix and moreover $A^{-1} \in G$. Thus, G is a group under matrix multiplication. (Notice that if some matrix $A \in G$ was invertible as a matrix but its inverse was not in G, then G would *not* be a group.)