Homework 13 : Due Monday, October 4

Problem 1: Let G be a group. Suppose that H and K are finite subgroups of G such that |H| and |K| are relatively prime. Show that $H \cap K = \{e\}$.

Problem 2: Consider \mathbb{Q} as group under the operation of addition. Notice that \mathbb{Z} is a subgroup of \mathbb{Q} . Show that $[\mathbb{Q} : \mathbb{Z}] = \infty$.

Problem 3:

a. Let G be a group with the property that $a^2 = e$ for all $a \in G$. Show that G is abelian.

b. Show that every group of order 4 is abelian.

Note: Recall that $U(\mathbb{Z}/8\mathbb{Z})$ is an example of abelian group of order 4 which is not cyclic. Since 2, 3, and 5 are prime, it follows that the smallest possible order of a nonabelian group is 6. Indeed, S_3 is an example of such a group.

Problem 4: Let $p, k \in \mathbb{N}^+$ with p prime. Suppose that G is a group with $|G| = p^k$. Show that G has an element of order p.

Problem 5: Let G be a group. Suppose that H and K are both subgroups of G. Define a relation on G by letting $a \sim b$ mean that there exists $h \in H$ and $k \in K$ with b = hak.

a. Show that \sim is an equivalence relation on G.

b. The equivalence classes of ~ are called *double cosets*. Find the double cosets in the case where $G = A_4$ and $H = K = \langle (1 \ 2 \ 3) \rangle$.