Homework 16 : Due Monday, October 11

Problem 1: Show that \mathbb{Q}/\mathbb{Z} is an infinite group with the property that every element has finite order.

Problem 2: Let G be a group and let H be a normal subgroup of G. a. Show that G/H is abelian if and only if $a^{-1}b^{-1}ab \in H$ for all $a, b \in G$. b. Suppose [G:H] is finite and let m = [G:H]. Show that $a^m \in H$ for all $a \in G$.

Problem 3: Suppose that G is a group with $|G| \neq 1$ and |G| not prime (so either |G| is composite and greater than 1, or $|G| = \infty$). Show that there exists a subgroup H of G with $H \neq \{e\}$ and $H \neq G$. b. Show that the only abelian simple groups are the cyclic groups of prime order.

Problem 4:

a. Suppose that G is a group with the property that G/Z(G) is cyclic. Show that G is abelian. b. Suppose that G is a group and |G| = pq where p and q are (not necessarily distinct) primes. Show that either $Z(G) = \{e\}$ or Z(G) = G.