Homework 5 : Due Wednesday, September 8

Problem 1: Let f_n be the n^{th} Fibonacci number as defined in Problem 2 on Homework 3. Show that $gcd(f_n, f_{n+1}) = 1$ for all $n \in \mathbb{N}^+$.

Problem 2: Let $a, b, c \in \mathbb{Z}$ with a > 0. Show that $gcd(ab, ac) = a \cdot gcd(b, c)$.

Problem 3: Let $a, b, c \in \mathbb{Z}$. Show that the following are equivalent:

- gcd(ab, c) = 1
- gcd(a, c) = 1 and gcd(b, c) = 1

Problem 4: Let $a, b \in \mathbb{N}^+$ and let d = gcd(a, b). Since d is a common divisor of a and b, we may fix $k, \ell \in \mathbb{N}$ with a = kd and $b = \ell d$. Let $m = k\ell d$.

- a. Show that $a \mid m, b \mid m$, and dm = ab.
- b. Show that $gcd(k, \ell) = 1$.

c. Suppose that $n \in \mathbb{Z}$ is such that $a \mid n$ and $b \mid n$. Show that $m \mid n$.

Because of parts a and c above, the number m is called the *least common multiple* of a and b and is written as lcm(a, b). Since dm = ab from part a, it follows that $gcd(a, b) \cdot lcm(a, b) = ab$.