Homework 10: Due Friday, November 13

Problem 1: Let R be a ring. An element $a \in R$ is called *nilpotent* if there exists $n \in \mathbb{N}^+$ with $a^n = 0$.

- a. Show that every nonzero nilpotent element is a zero divisor.
- b. Show that if a is both nilpotent and an idempotent, then a = 0.
- c. Show that if a is nilpotent, then 1 a is a unit.
- d. Find all nilpotent elements in $\mathbb{Z}/36\mathbb{Z}$.

Problem 2: Let X be a nonempty set. Let $R = \mathcal{P}(X)$ be the power set of X, i.e. the set of all subsets of X. We define + and \cdot on elements of R as follows. Given $A, B \in \mathcal{P}(X)$, define

$$A + B = A \cup B$$
$$A \cdot B = A \cap B$$

a. Show that with these operations, R is not a ring in general (give a specific counterexample).

Let's scrap the above operations and try again. Given two sets A and B, the symmetric difference of A and B, denoted $A \triangle B$, is

$$A \triangle B = (A \backslash B) \cup (B \backslash A)$$

i.e. $A \triangle B$ is the set of elements in exactly one of A and B. Now define + and \cdot on elements of R as follows. Given $A, B \in \mathcal{P}(X)$, let

$$A + B = A \triangle B$$
$$A \cdot B = A \cap B$$

It turns out that with these operations, R is a commutative ring, although some of the axioms are a pain to check (especially associatively of + and distributivity).

b. Explain what the additive identity and multiplicative identity are in this ring, and explain what the additive inverse of an element is.

Problem 3: For each of the following fields F, and given $f(x), g(x) \in F[x]$, calculate the unique $q(x), r(x) \in F[x]$ with f(x) = q(x)g(x) + r(x) and either r(x) = 0 or $\deg(r(x)) < \deg(g(x))$. a. $F = \mathbb{Z}/2\mathbb{Z}$: $f(x) = x^5 + x^3 + x^2 + \overline{1}$ and $g(x) = x^2 + x$. b. $F = \mathbb{Z}/5\mathbb{Z}$: $f(x) = x^3 + \overline{3}x^2 + \overline{2}$ and $g(x) = \overline{4}x^2 + \overline{1}$

Problem 4: Find a nonconstant polynomial in $\mathbb{Z}/4\mathbb{Z}[x]$ which is a unit. Moreover, show that for every $n \in \mathbb{N}^+$, there exists a polynomial in $\mathbb{Z}/4\mathbb{Z}[x]$ of degree n which is a unit.

Problem 5: Consider the ring $R = \mathbb{Z} \times \mathbb{Z}$ as a direct product (so addition and multiplication are componentwise). Determine, with explanation, which of the following subsets are ideals of R. a. $\{(a, 0) : a \in \mathbb{Z}\}$ b. $\{(a, a) : a \in \mathbb{Z}\}$

c. $\{(2a, 3b) : a, b \in \mathbb{Z}\}$

Problem 6: Define $\varphi \colon \mathbb{C} \to M_2(\mathbb{R})$ by letting

$$\varphi(a+bi) = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$$

Show that φ is an injective ring homomorphism (so \mathbb{C} is isomorphic to the subring range(φ) of $M_2(\mathbb{R})$).

Problem 7: Suppose that R and S are rings and that $\varphi \colon R \to S$ is a function such that

- $\varphi(r+s) = \varphi(r) + \varphi(s)$ for all $r, s \in R$.
- $\varphi(rs) = \varphi(r) \cdot \varphi(s)$ for all $r, s \in R$.

Thus, in contrast to the definition of a ring homomorphism, we are *not* assuming that $\varphi(1_R) = 1_S$.

a. Show that $\varphi(1_R)$ is an idempotent of S.

b. Show that if φ is surjective, then $\varphi(1_R) = 1_S$.

c. Suppose that S is an integral domain and that φ is not the zero function (i.e. there exists $r \in R$ with $\varphi(r) \neq 0_S$). Show that $\varphi(1_R) = 1_S$.