Homework 6: Due Friday, October 9

Problem 1: For each of the following subgroups H of the given group G, determine if H is a normal subgroup of G.

a. $G = S_4$ and $H = \langle (1 \ 2 \ 3 \ 4) \rangle = \{ id, (1 \ 2 \ 3 \ 4), (1 \ 3)(2 \ 4), (1 \ 4 \ 3 \ 2) \}.$

b. $G = D_4$ and $H = \langle rs \rangle = \{id, rs\}.$

c. $G = A_4$ and $H = \{id, (1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3)\}$. (First check that H is indeed a subgroup of G). Suggestion: Normal subgroups have many equivalent characterizations. In each part, pick one of these which will make your life easy.

Problem 2: Suppose that *H* and *K* are both normal subgroups of *G*. Show that $H \cap K$ is a normal subgroup of *G*.

Problem 3: Show that every element of \mathbb{Q}/\mathbb{Z} has finite order.

Note: We argued in class that $[\mathbb{Q} : \mathbb{Z}] = \infty$ (if $q, r \in \mathbb{Q}$ with $0 \le q < r < 1$ then $q + \mathbb{Z} \ne r + \mathbb{Z}$ because $r - q \notin \mathbb{Z}$), so \mathbb{Q}/\mathbb{Z} is an infinite abelian group.

Problem 4:

a. Suppose that G is a group with $|G| \neq 1$ and |G| not prime (so either |G| is composite and greater than 1, or $|G| = \infty$). Show that there exists a subgroup H of G with $H \neq \{e\}$ and $H \neq G$.

b. Suppose that G is an *abelian* group. Show that G is simple if and only if |G| is prime.